Abstract
In this paper, we study selecting a transformation so that the transformed variable is nearly symmetrically distributed. The large sample properties of an M-estimator of transformation parameter that is obtained by minimizing the integrated square of the imaginary part of the empirical characteristic function are investigated when a random sample is selected from some unspecified distribution. According to influence function calculations and Monte Carlo simulations, these estimates are less sensitive, than the normal model maximum likelihood estimates, to a few outliers.