참고문헌
- World J. Microbiol. Biotechnol. v.11 Heat-stable enzyme from extremely thermophilic and hyperthermophilic microorganisms Leuschner, G.;G. Antranikian
- Nature v.300 Ultrathin mycelia-forming organism from submarine volcanic areas having an optimum growth temperature of 105℃ Stetter, K. O.
- Science v.142 Upper temperature limit of life Kemper, E. S.
- J. Bacteriol. v.98 Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile Brock, T. D.;H. Freeze
- Extremophiles v.1 Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113℃ Blochl, E.;R. Rachel;S. Burggraf;D. Hafenbradl;H. W. Jannasch;K. O. Stetter
- Appl. Environ. Microbiol. v.59 Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis Brown, S. H.;R. M. Kelly
- Microbiol. & Mol. Biol. Rev. v.65 Hyperthermophilic enzymes: Sources, uses, and molecular mechanism for thermostability Vielle, C.;G. J. Zeikus
- Biochemistry v.29 Dominant forces in protein folding Dill, K. A.
- Proteins Struct. Funct. Genet. v.15 The structure of a thermally stalbe 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent Davies, G. J.;S. J. Gamblin;J. A. Littlechild;H. H. C. Watson
- Appl. Environ. Microbiol. v.61 xyIA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana Vielle, C.;D. S. Burdette;J. G. Zeikus
- Biochemistry v.18 Thermal stability and protein structure Argos, P.;M. G. Rossmann;U. M. Grau;H. Zuber;G. Frank;J. D. Tratschin
- J. Biol. Chem. v.274 Extremely thermostable serine-type protease from Aquifex pyrophilus. Molecular cloning, expression, and characterization Choi, I.-G.;W.-G. Bang;S.-H. Kim;Y. G. Yu
- J. Biol. Chem. v.269 Purification and characterization of extremely thermophilic and thermostable 5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds Cacciapuoti, G.;M. porcelli;C. Bertoldo;M. De Rosa;V. Zappia
- J. Mol. Biol. v.226 Contribution of the hydrophobic effect to globular protein stability Pace, C. N.
- Structure v.3 The structure of Pyrococcus furiosus glutanate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures Yip, K. S.;T. J. Stillman;K. L. Britton;P. J. Artymiuk;P. J. Baker;S. E. Sedelnikova;P. C. Engel;A. Pasquo;R. Chiaraluce;V. Consalvi;R. Seandurra;D. W. Rice
- Biochemistry v.37 Electrostatic stabilization in methionine aminopeptidase from hyperthermophile Pyrococcus furiosus Ogasahara, K.;E. A. Lapshina;M. Sakai;Y. Izu;S. Tsunasawa;I. Kato;K. Yutani
- Proc. Natl. Acad. Sci. USA. v.84 Enhanced protein thermostability from site-directed mutations that decrease the entropy of ufolding Matthews, B. W.;H. Nicholson;W. J. Becktel
- Proteins Struct. Funct. Genet. v.37 Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability Li, C.;J. Heatwole;S. Soelaiman;M. Shoham
- Protein Eng. v.13 Molecular determinants of xylose isomerase thermal stability ad activity: analysis by site-directed mutagenesis Sriprapundh, D.;C. Vielle;J. G. Zeikus
- Enzyme Microb. Technol. v.12 Activation of the glucose isomerase by divalent cations: evidence for two distinct metal-binding sites Marg, G. A.;D. S. Clark
- Proteins v.9 A metal-mediated hydride shift mechnism for xylose isomerase based on the 1.6A Streptomyces rubiginosus structures with xylitol and D-xylose Whitlow, M.;A. J. Howard;B. C. Finzel;T. L. Poulos;E. Winborne;G. L. Gilliland
- Biochemistry v.36 The crystal structure of zinc-containing ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7 Fujii, T.;Y. Hata;M. Oozeki;H. Moriyama;T. Wakagi;N. Tanaka;T. Oshima
- Eur. J. Biochem. v.264 Zinc and an N-terminal extra stretch of the ferredoxin from a thermoacidophilic archaeon stabilize the molecule at high temperature Kojoh, K.;H. Matsuzawa;T. Wakagi
- J. Mol. Biol. v.214 Crystal structure of thermitase at 1.4 resolution Teplyakov, A. V.;I. P. Kuranova;E. H. Harutyunyan;B. K. Vainshtein;C. Frommel;W. E. Hohne;K. S. Wilson
- J. Mol. Biol. v.294 Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8A resolution Smith, C. A.;H. S. Toogood;H. M. Baker;R. M. Daniel;E. N. Baker
- Biosci. Biotechnol.Biochem. v.64 Characterization of acid-stable glucose isomerase from Streptomyces sp., and development of single-step processes for high-fructose corn sweetener(HFCS) production Kaneko, T.;S. Takahashi;K. Saito
- J. Biotechnol. v.8 Coimmobilization of glucoamylase and glucose isomerase by molecular deposition technique for one-step conversion of dextrin to fructose Ge, Y.;H. Wang;H. Zhou;S. Wang;Y. Tong;W. Li
- Appl. Biochem. Biotechnol. v.11 Thermodynamics of the conversion of aqueous glucose to fructose Tewari, Y. B.;R. N. Goldberg
- World Rev. Nutr. Diet. v.85 D-tagatose-a novel low-calorie bulk sweetener with prebiotic properties Bertelsen, H.;B. B. Jensen;B. Buemann
- Biotechnol. appl. Biochem. v.31 Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase Roh, H.J.;P. Kim;Y. C. Park;J. H. Choi
- Protein Eng. v.1 Relationship of protein flexibility to thermostability Vihinen, M.
- Proc. Natl. acad. Sci. USA. v.95 Engineering an enzyme to resist boiling Van den Burg, B.;G. Briend;O. R. Beltman;G. Venema;V. G. Eijsink
- Protein Eng. v.12 Directed evolution converst subtilisin E into a functional equivalent of thermitase Zhao, H;F. H. Arnold