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| A New Convergence Behavior of the Least Mean Fourth
Adaptive Algorithm for a Multiple Sinusoidal Input
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ABSTRACT

In this paper we study the convergence behavior of the least mean fourth(LMF) algorithm where the error

raised to the power of four is minimized for a multiple sinusoidal input and Gaussian measurement noise. Here

we newly obtain the convergence equation for the sum of the mean of the squared weight errors, which indicates

that the transient behavior can differ depending on the relative sizes of the Gaussian noise and the convergence

constant. It should be noted that no similar results can be expected from the previous analysis by Walach and

Widrow™,

I. Introduction

In many areas of digital communication,
control, and signal processing, it is often desired
to extract useful information from a set of noisy
data by designing an optimum filter. One way of
solving this filter-optimization problem is by using
a Wiqner filter™, However, this assumes that the
signals being processed are stationary and it
requires a priori knowledge, or at least the
estimates, of their statistics which are not always
available. Moreover, solving a set of linear matrix
equations is mneeded to find optimum filter
coefficients.

However, the adaptive filter makes it possible
to perform satisfactorily in such environments
where complete knowledge of the signal statistics
is unavailable. In other words, the adaptive filter
gradually learns the required correlations of the
input signals and adjusts its  coefficients
recursively according to some suitably chosen
statistical criterion.

During the last two decades, the Least Mean
Square(LMS) algorithm has been

successfully utilized for a variety of applications
)

adaptive

including system identification™"", noise cancella-
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tion'®"), echo cancellation™”, and channel equa]iza—j
tion™.  Meanwhile, the filtering

algorithms that are based on high order ertor

adaptive

power conditions have been proposed and their
performances have been investigated“’l1’12’13’14]:
Despite the potential advantages, these algorithms
are less popular than the conventional LMS
algorithm in practice. This is partly because the
analysis of the high order error based algorithms
is much more difficult, and thus little has been
learned about the algorithms.

In the least mean fourth (LMF) adaptive
algorithm™ the error raised to the power of four
is minimized. Here, one has to consider the
possibility of the convergence to the local
minimum. However, the mean of the error to the
power of four is a convex function of the weight
vector, so it cannot have local minima. Indeed the
Hessian matrix of the error to the fourth power
function can be shown to be positive definite, or
positive semidefinite™.

Walach and Widrow studied the convergence of
the LMF adaptive algorithmm. However, in their
convergence study of the mean squared weight
errors, the statistical moments of the weight errors
with the orders greater than two were neglected
and the transient behavior was not analyzed. In
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this paper, we present a mnew result on the
convergence of the least mean fourth algorithm
under the system identification model with the
multiple sinusoidal input and Gaussian
measurement noise.

Following the introduction, we give a brief
description of the underlying system model in
Section 1II.

analysis and the simulation are presented in

The results of the convergence
Sections Il and IV, respectively.  Finally we
make a conclusion in Section V.

II. System Model

We consider an adaptive noise cancellation
problem for the multiple sinusoidal input and
Gaussian measurement noise. In that case, both
the unknown system and corresponding adaptive
filter can be described by the multiple in-phase
(I ) and quadrature (¢ ) weights as shown in

Fig. 159,

nw _ 7 (m)

n(n)
Measuremen ¢
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Fig. 1 Adaptive digital filier for a multiple sinusoidal
input under study.

For the m-th sinusoidal input, the adaptive
canceller structure also comes to have two
weights w;,(»#) and wg (), with I and Q

inputs, x;,(n) and xg,(n), respectively. Thus
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the output of the m-th controller, y,(%) is

expressed as

Yok ={ w; (1) %1 (1) + we u(#) xg ()} (1
where

XIm (n) = Am cos (a)m n+ ¢m) = Am cos wm (n)a
Zom(W)=A, sin(w,n+ ¢,) 2 A, sn¥, (n),
m : branch index = 1, 2, 3, .., M,
n : discrete time index,
A : amplitude,
@ : normalized frequency,
¥ : random phase.
Also, referring to the notation in Fig. 1, the

error signal x;,(n) and e(#n) is represented by

en) = 3 [{#hmsrn(n) + g pqn(n)

— Va1 + fn)
== B AL [~ windeos T )

F{wo u(n) — wo mIsinTp(m) | + 7(x)

where 7(n) is zero-mean measurement noise.

It can be shown from (1) and (2) that
minimizing the fourth power error and using a
gradient-descent method[3] yields a pair of the
LMF weight update equations for each m as
Wrm (BT D=1, (1) + 2 12, € (R) %1 (1)

and

Wom{n+ 1) =g u(n) + 24,8 (n) xom(nw)  (3)

where 4, is a convergence constant.

In the following, we analyze the convergence
behavior of the mean and summed variance of
weight errors of the LMF algorithm using a new
analysis method.

Ii. Convergence Analysis

To see how the adaptive algorithm derived in
(3) converges, we first investigate the convergence
of the expected values of the adaptive weights.
To simplify the convergence equation, we may
introduce two weight errors as
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UI,m(n) £ w[,m(n) - w},m and

Vo, m(1) 2 wo n(n) — Wo m @)
Inserting (4) into (3), we have

vim(mtD=v;,, () + 2t €(n) %7 ,(m) and
Vom (Rt 1) =09, (1) +21, (1) xg (1) (5)

Next we investigate the convergence of the
mean-square error(MSE) E[%(»)]. Using (2) and
(4) we can express the MSE as

EléW] = 2 &(n) + d

13 ahem + 4 ©

=

where

En(m) 2 B[V}, (m1+ Elvh,, ()],

oh & El 7 (m)].
From (6) we find that studying the convergence
of MSE is directly related to studying the sum of
£, (n).

Inserting (1) and (2) into (5), and assuming
that input signal x,(#), measurement noise 7(#),
and  weight errors vim(n), vom(n)  are
independent of each other, we take the statistical
average of both sides to obtain two equations for
E[v:(n+1)] and E[¢4,(»n+1)]. Since the
two equations are symmetrical, we add them and
E [}, n+D]ZE [vh, (n+D].
This eliminates the subscripts I and Q to simplify

assume  that

the second moment equation of weight error, and
rearranging the terms yields

Bl (n+1)]
=2 L ASEL,(n) 1+ BEL (] ELoA(n)]}

— 2 o Al A B+ (BLA()D? )

+425u3,,A§nE[7/2(n)]{ Elvp(m]+ (ELv5,(m)]D)?}

+ {1 — 6 AL ElA ()] + 30424, A% EL 7' (m) 1Y EL 4 m)]
+ 2 48, ALE[/f(n)]. )

Assuming that 7(») is a Gaussian with a zero
average, wj,(n), wg (n) are Gaussian variables,
and v,,(#) is also a Gaussian variable™.  Thus
™ can  be  simplified by  expressing
E[/& (m)] as E[4 (n)]. Although
E [v,, (n)] decreases very rapidly, it is not zero

from the beginning, Therefore, a Gaussian

random variable Aw,, (#) with zero average, and

its variance, are adapted as follows

Awm(”) %Vm(n) - Vm(”)’

EL ()] = V2(m)+ 0% (w) ®

where V,,(n) 2Hv,, (#)],
0%, (m) 2E[ 22w, (m)].

From (8) we find that during the Hansient
state, i.e. from the beginning to the moment just
before the steady state, o2(x) is much smaller
than 1V%(n) and E [v,, (#)] can be regarded as
Vi(n). On the other hand, p%(n) becomes
dominant over VZ%(x) in the steady state aﬁd
E [v,, (#)] can be regarded as o2(n). Now, we
apply (8) to (7) and use the relationship between
E[v5 (] and E[4% (] of the Gaussian

random variable[16] to arrive at the following
equation

Vi(n+ 1)+ pi(n+1)

=545, A% {V5(n) +90%(n) Vi) + 18 05lm) Vilm) + 6 p5(m))
— (31t Aty — 1515, AL, SV + 4 03(0) Vi) +2 00(m)}
(1= 6, AL A+ 0L AL &) (Vam) + oh(n)}
+ 30 45, AL &5 ©)

The convergence equation (9) may be examined
for two different cases. First, p%f(») and the

last term of (9) can be removed for the transient
state. Thus the transient convergence equation is
given by ‘

VE(n+1) = 5% AL VE.(n) — (Bun Al — 4512,A502) Vi (n)
+ (1= 6, A% 0+ 9013,A%,05) Vi) (10)
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Fig. 2 Leaming curves for the LMF algorithm of the
summed variance of weight errors at the transient

state. (1) VE(n) term. (2) Vi(n) term. (3) Vi(n)
term. (4) total.

Fig. 2. shows the summed variance convergence
curve of weight errors for the LMF algorithm at
the transient state that resulted from a theoretical
computation when g, = 02, A, =V2, and &
= 0.001. Taking each of the terms on the
right-hand side of (10) separately and examining
them carefully, we notice that the first V&(#)
and the last V2(x) terms start off as positive
values and are reduced to zero. However, the
second Vi(#) term starts off as a negative value
and increases to zero. It should be noted from
the right-hand side of (10) that in extreme cases,
only one of the two terms Vo(xn) or Vi(w) is
dominant. Therefore, we may consider a particular
value V%, ,, of V2(») for which those two terms

are the same. This value is given by

7 th:\/ 1= 6uy A% )+ Npfy Aoy

B4l AS, an

In (11) the first term 1V%(x) acts as the dominant
term when V%(n) is greater than V% ,. If V%
is smaller than V2, ,, then the last V() term
becomes dominant.

Fig. 3 illustrates which of the two terms, the
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first term  VS(») and the last term V%(»), is
dominant when V2, ,(») = 0.8. This illustration is
in terms of the convergence constant s, and the
variance of measurement noise o). Point (a) is a
region in which the term 1V%(») dominates over
the other and point (b) is when the V%(») term is

the dominant one. Therefore, the transient
convergence equation (10) can be written as

5u2, ALV ()
Vit 1 =! (1-64,A%d
+9015,A%0) VE() |, Vi(n) K Vi (120)

TS Vs (122)

From (12) we may derive the conditions for
stability and the time constant. Expressing the
general form in series, (12a) can be rewritten as

Vi(m) = (545,45 © V7 (Vi)Y

= m (V5 Al VE(O)). (13

Thus (13) is stable under the following condition

| VB un AL VL0 1< 1,

1
0 < um <\/3A‘$,LV§,,(O)' (14)

Z05¢ o (b)

005 01 015 02 025 03 035 04
“

Fig. 3 Dominant term decision diagram for the LMF
algorithm of the summed variance of weight

errors at the transient-state.
[ point (a): ¢, =0.3 and Z=0.1.
point () : 41,,=0.2 and Z=0.5. ]

Note from the conditions for stability in (14) that
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the initial value of weight error acts as a limiting
factor, along with the amplitude of input signal.
From, (12a) the time constant may not define
because it is not a geometric series.

Also, (12b) is stabilized when it satisfies the
condition

| 1—6u,A%d+ 90t AL 1< 1,

0 < pm < (15)

1
15 A% 62"

From (12b) the time constant in the second
moment of weight error ¢, is givenm by

_ 1
Tms = G AL E (- Ty ALY (16)

In the steady state V2(n) becomes sufficiently
small and the terms that include p%(») and
o8(m) can be ignored in the convergence

equation (9). The equation is then simplified as

Pin+1) = (1 -6, AL d% + 9045 A% ) 05(7)

+ 30 14, AL o, an

Additionally, the summed variance of weight
errors in the steady state £,(c) is 2p,,(c0) and

it can be written as

4
£,(0) = 2 pp(00) = ——0Em %y (18)

1-15¢, A%

When the convergence constant g,  satisfies

the stability condition (15), the second term on
the denominator of the right-hand side of (18) is
sufficiently smaller than the first term and it can
be ignored to yield the following equation

&,,(0) =10, o4 (19)

Comparing the performance of adaptive algori-
thms usually involves two methods™™.  The first
method is to compare the state of convergence
after setting equal values for the steady state, and
the other one involves comparing the steady state
values for same rate of convergence.

Summed variance of weight errors of the LMS
algorithm is a geometric series and the time
constant can be defined. However, the LMF
algorithm (9) is not a geometric series. So, the
time constant may not be defined. Then we set
the steady state values of the two algorithms
equal and compare the convergence rates. From
(19) and (34) in [1] we obtain

Em(LMF) (oo) = Em(LMS) (00)5

4
10 fotzsm 05 = Lom(zus) 02:7 s

e = L2 20)
7

where p,umm and  p,ue are the convergence

constants of the LMF and LMS algorithms,

respectively.

IV. Computer Simulations

In this section we present the results obtained
from computer simulation along with the
theoretical analysis of the LMF algorithm in the
previous section.

We set the frequencies of the first and second
sinusoidal signals at 120 Hz and 240 Hz,
respectively, and selected 2 KHz for the sampling
frequency.  The input signal x(n) and desired
signal d(n) are given by

x(n) = ,ZIA,” cos(wpn+ )

240w
2000

2 * x
d(n) = mzl{ WrmXI,m + WQ,me,m}

480 7 n

=v2 { cos( + $1)+ cos(

=0.6x7,(m) — 0.1x0:(m + 0.3x72(n) — 0.3xg2(n).
1)

The simulation was carried out by setting 0.001
and 1 as the variances of measurement noise o ,
and the initial value of weights were zero. The
simulation results were obtained by ensemble
averaging 1000 independent runs.

Fig. 4 show the summed variance convergence
curves of weight error for the LMF algorithm that
resulted from the simulation in case of dividing
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them  between V(%) and 0% (n) when
s = 0.0002and &% = 1, respectively. We see
that V%(n) is the dominant term during the
transient state whereas o?(») becomes dominant
during the steady state as we analyzed in the
section [II.B.

— &5 ()
000000: V%(n) 1

ot p%(n) i

Log Scale [dB]

-70

. L L . 2 L L
1000 2000 3000 4000 5000 6000 7000 8000
Number of Adaptations

Fig. 4 Learning curves for the LMF algorithm of the
summed variance of weight errors when the
convergence behaviors are divided between

V() and o*(n).
[ tiam = 0.0002, o2 =1.]

We have compared the convergence behavior of
the LMF algorithm and that of the LMS
algorithm through simulation. The convergence
speed of the two algorithms were compared afier
setting the steady-state values equal. The
convergence constants of the LMF and LMS
algorithms were carefully chosen so that they
satisfied the conditions given in (20) for a given
variance of the measurement signal. To be
specific, we selected 0.2 and 0.0002 for g ym to
make the steady-state values of the two
algorithms equal when o was given as 0.001
and 1 and g ;s was 0.002.

In Fig. 5 the convergence behavior curves of
summed variance of weight error obtained from
simulation are compared with each other. It has
been newly found that for some regions of 4
and 2. The initial convergence of the LMF

algorithm is much faster than the conventional
LMS algorithm. This result in sufficiently small

V2, values compared to unity as the curve (a) of
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Fig. 5. Later on, the LMF convergence looks
similar to the LMS convergence. This fact has
not been reported yet, mainly because the higher
order moments have not been included in the
previous analyses of the LMF transient behavior'.

On the other hand, when V2 is large as in the
curve (b) of Fig. 5, the LMF algorithm converges

geometrically at a slightly slower rate than in the
LMS case.

\\ : LMF
B TN ° o o : LMS
PN
-20 -\ " \w,\ .
= ) N N T S FaN
% \\ . o \\‘K 'w‘? S \// \“-5\ /\//‘\
P N (b) v
1N
- S
S ~
50 . J
\7_\‘*”\/\,\ /\\‘/;ﬂ‘—f\;\'[v«v T
C N N,
-60 (a)

-70

1000 2000 3000 4000 5000 600C 7000 8000
Number of Adaptations

Fig. b Comparison of the LMF and LMS algorithm
learning curves of the summed variance of weight

e1ToTSs.
@ paume= 0002, pym= 02, to 0.001
and V2, =0.558.
(b) Hms™ 0002, Houm= 00002, 02,7= 1
and %, = 558.

V. Conclusions

We present a new result on the convergence of
the least mean fourth(LMF) algorithm under the
system identification model with the multiple
sinusoidal input and Gaussian measurement noise.
The analytical result on the mean square
convergence depends on the power of Gaussian
noise and the size of convergence factor.
Accordingly, the transient behavior can be
characterized by one of the two cases: (1)
initially the LMF algorithm converges much faster
than the LMS, but soon after that it converges
almost linearly on a logarithmic scale like the
LMS algorithm, or (2) the LMF algorithm
converges linearly and at a slower rate than the
LMS. To sum up, different convergence behaviors
were observed depending on the variance of
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Gaussian measurement noise and the magnitude of

the convergence constant.
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