시공간적 상관성을 이용한 움직임 벡터 예측 기반의 FASCO 블럭 정합 알고리즘

The FASCO BMA based on Motion Vector Prediction using Spatio-temporal Correlations

  • 정영훈 (삼성전자(주) Digital Media 총괄 중앙연구소) ;
  • 김재호 (부산대학교 컴퓨터 및 정보통신연구소)
  • 발행 : 2001.11.01

초록

본 논문에서는 표준 비디오 부호화기를 위한 블럭 정합 방식을 제안하였다. 일반적으로 기존 방식에 사용되는 광역-협역 방식이 아닌 \"슬라이스 경쟁\`이라는 새로운 개념이 도입되었다. 기존의 SAD의 누적 방식인 순차 방식에서 확산 방식으로 변경함으로써 SAD증가 추이의 선형성이 확보되므로, 누적 초기에 움직임 벡터로서 가능성이 낮은 후보들을 미리 제거하여 불필요한 계산량을 줄이는 방식이다. 그리고 움직임 벡터 예측방식과 적응적 탐색 영역개념을 도입하여 블럭 정합 방식을 효율적으로 지원하였다. 이 두 방식의 도입으로 약 13%의 계산량 감소가 발생하였으며, 최종적으로 기존의 고속 블럭 정합 방식들과 비교하면 39%~77%의 SAD 누적 횟수가 감소되었다. 그리고 다양한 테스트 영상에 대하여, 평균 MAD는 항상 낮으며, 전역 탐색 블럭 정합 방식에 가장 근접한 결과를 얻었다. 얻었다.

In this paper, a new block-matching algorithm for standard video encoder is presented. The slice competition method is proposed as a new scheme, as opposed to a coarse-to-fine approach. The order of calculating the SAD(Sum of Absolute Difference) to fad the best matching block is changed from a raster order to a dispersed one. Based on this scheme, the increasing SAD curve during its calculation is more linear than that of other curves. Then, the candidates of low probability can be removed in the early stage of calculation. And new MV prediction technique with an adaptive search range scheme also assists the proposed block-matching algorithm. As a result, an average of 13% improvement in computational power is recorded by only the proposed MV prediction technique. Synthetically, the computational power is reduced by 3977∼77% than that of the conventional BMAs. The average MAD is always low in various sequences. The results are also very close to the MAD of the full search block-matching algorithm.

키워드