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Continual Enhancement of Cutting Conditions
Using Neural Network for Milling Process
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1. Introduction

In information driven manufacturing systems, CAPP (Computer-aided Process
Planning) (ElMaragy, 1993) links design to manufacturing. It determines a set of
instructions and machining parameters required to manufacture a part. There are generally
two approaches to CAPP systems, namely variant one and generative one. The variant
approach is basically a computerized database retrieval approach. The variant or retreval
approach 1s based on group technology methods of classifving and coding parts for the
purpose of segregating these parts into family groups. It is strongly restrictive in that new
parts to be planned have to be similar to those already in the data file. The second
approach to CAPP is the generative type. Systems of this type synthesize the process plan
for a new part. These systems usually employ either a set of algorithms or
knowledge-based techniques to progress through the various technical and logical decisions
toward an appropriate process plan for a part. The generative approach provides fast
advice to designers early in the stage of design process and is closely coupled with the
product-modeling activities. Once the manufacturing technology and the type of equipment
or process have been chosen, further detailed planning is carried out as usual. In this point
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of view, process planning is divided into high-level process planning and low-level process
planning stage. After high-level process planning, low-level process planning is performed.
In the high-level process planning, the machining processes, machines and tooling capable
of performing these processes, and the machining groups are established. In the low-level
process planning called operation planning, partial operations are selected, cutting
parameters are determined, and time and cost are calculated to convert a piece part from
its initial form to a predetermined shape as per the engineering drawing.

While there has been some success in the systematization of the feature recognition
(Kim, 1992; Waco, 1994) and the operation sequencing (Bhaskara, ct. al, 1999; Barkocy and
Zdeblick, 1984), the process of selecting cutting conditions largely depends on human
experience. Mathematical models of cutting mechanisms and empirical equations
representing the cutting process have been suggested for several decades by numerous
researchers (Gupta, et. al, 1995, Kee, 1996), but the results of those studies were not
general enough to be applied for the systematization of the selection of cutting parameters.
Especially in the case of the milling process, the models are operative only for limited
situations. Therefore, most of the CAPP systems do not calculate or decide cuftting
conditions by analytical methods, but offer the means to retrieve the recommended cutting
condition from a handbook type database (Van Houten and Vant Erve, 19389). The approach
is sensible since the content of machining data handbooks can be regarded as an
accurnulation of many years experience and has been tested through the metal cutting
experiments.

The problem is that the retrieved data should be mwodified according to the actual
operation conditions hecause only a few - ie material type, tool type - among many
factors affecting the operation are considered for selecting cutting parameters.

In the previous study (Park, et. al, 1996), the retrieved data was modified through a
neural network and filtered by the rules including analytical equations. The point of
interest of the study was to model the process of modifying the retrieved cutting condition
by an experienced machinist using a back-propagation neural network. The result of the
study was satisfactory by the initial point of interest. The next issue was that the quality
of the output of the neural network depends on that of the training data set. As the set of
reference cutting conditions may not be perfect from the beginning, the model trained
through the imperfect data needs to be enhanced while the system is in continual usec.

In this study, for efficient enhancements of the function [or generating cutting
conditions, EVOLS (EVOlutionary Learning Systermn of cutting conditions) for milling
processes has been developed. In the system, the methodology of the [uzzy ARTMAP
neural network, including the newly suggested replacement algorithm, is applied to model
the process of learning and enhancing cutting conditions. The fuzzy ARTMAP neural
network (Carpenter, et. al, 1992) implements a supervised leaming mechanism capable of
self-organizing stable recognition categories in response to arbitrary sequences of input
patterns. Three classes of experiments will illustrate the performance of the fuzzy
ARTMAP with the replacement algorithm. Figure 1 shows the architecture of the operation
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planning system containing EVOLS.
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Figure 1. Architecture of the proposed operation planning system.

2. Review of fuzzy ARTMAP Neural Networks

The fuzzy ARTMAP neural network is capable of on-line and off-line supervised
learning in response to arbitrary sequences of analogue and binary input/target vector
pairs. As shown in Figure 2, the fuzzy ARTMAP network is composed of two fuzzy ART
networks (ART. ART:), and these networks are linked together by a map field (F). The
fuzzy ART network classifies the given learning patterns into the categories according to
similarities among them. Its parameters such as choice parameter «, leaming rate £, and
vigilance parameter ¢, have an mnfluence on deciding the numbers of catepory. The higher
the vigilance level, smaller or more specific categories will be created. When an input
patternt 1s presented to the network, the F layer will receive inputs from hoth the ART,
and the ART». If the two F® inputs match, the network will learn by modifying the
weight vectors of the chosen categories J and K respectively on the F3 and F) of the
ART. and ART» If there is a mismatch at the F* layer, the baseline vigilance level of the
ART, will be raised. The network will subsequently search another ART, category. This
process continues until the network either finds an ART. category that predicts the
category of the current target correctly, or creates a new category in ART, and a
corresponding link in the map field, which will learn the current input/target pair. Further
details on this network can be found in the reference (Carpenter, et. al., 1992},
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Figure 2. Architecture of the fuzzy ARTMAP neural network.
3. Replacement Algorithm for the Enhancement of Cutting Conditions

When new cutting conditions that are more effective are obtained through real
machining experiments, etc., the replacement algorithm proposed here deletes the old
information learmed through the fuzzy ARTMAP, and then makes the network learn the
better ones.

This algorithm is composed of deletion and creation procedures. By the deletion
procedure, the previously learned category J and K link of the Fuzzy ARTMAP is
removed, and then new category J and K™ link for more effective leaming patterns is
generated by the creation procedure. This algorithm can be briefly described as [ollows:

Deletion Procedure

Step 1 [Input pattern coding and presentation] Perform complement coding of input pattern

a® on layer F3 for ART, and then present the complement coded input pattern

L=(a® a*?) to layer F2.

Step 2 [Category choice]l Determine a winner neuron J at layer Fj by a choice function
T;(1,), and then perform the vigilance test.

Step 3 [Search previously learned information] Search weight wi that has a value of one,
and category k = K using category j =J

Step 4 [Unlearmning previously learned information] Set the previously found weight W?}} to zero.
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Creation Procedure

Step 1 [Input pattern coding for ART:] Perform complement coding of input pattem
b(i)(new).

Step 2 [Learning new pattern] Using I, and I,= ( b®®eW) pe®ew)y  wall the Fuzzy
ARTMAP learning procedure described in section 2.

4. Evolutionary Learning Procedures

EVOLS consists of two fuzzy ARTMAP networks with the replacement algorithm
and other auxiliary sub-modules. The first fuzzy ARTMAP (Model—V) is for learning and
enhancing cutting speed V, and the second fuzzy ARTMAP (Model-f) is for learning and
enhancement of feed f Table 1 and 2 show input parameters defined for the fuzzy
ARTMAP networks, real values, and encoded input values which range from 0 to 1 for
ART, ARTyv, and ARTy. For the Model-V, input parameters described in Table 1 and
Table 2 (a) are used, and for the Model-f, input parameters described in Table 1 and
Table 2 (b) are used.

Table 1. Inpui parameters for ART,
(a) Model-V

Input Input values
Real val
parameters cal vates of ART,

Medium carbon leaded

Workpiece (ANSI : 10L45, 10L50) 0.5000

material
Hardness 225 0.5000
(BHN) 50 ~ 400 : ;
Face mill 0.8750
Cutter type i : PR
Carbide-Uncoated
0.8000
Cutter material (ISO : P20, P30, P40)
Depth of cut  0.01 ~ 13.0 10 0.6664
(mm) (15.0)
i 60 0.9999
TO(‘)I life 0.01 ~ 60 5 e e
(min) : :
i 2.4 0.7419
Nose radius 01 ~ 39 : :

(mm)
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Table 2. Input parameters for ART;

(a) ARTw
;nal;:rtneters Real values infp;;;slues
Cufing spoed g agp 0
(a) ARTy
Lr;li:;eters Real values (I)r;p;;;jlues
g 0.415 0.826
I;:z:i;tivth) 0.01 ~05 - : 2

The flowchart in .Figure 3 summarizes the overall procedure in EVOLS. Real values of input
parameters for ART. sent to EVOLS are encoded to the input form for ART, in module ENC-IP,
and then checked in module FA-PRA. If a cutting condition is not proposed, or in other words, the
pattern 1s previously unleamed in the networks, the cutting condition generated n module
GEN-CCis sent to the module ENC-IP, and then leamed in the module FA -PRA. Otherwise,
EVOLS performs the step io confirm whether the proposed cutting condition is enhanced through
the replacement algorithm or not. If the cutting condition has to be enhanced, the better one
generated through machining experiments, etc. is sent to the module ENC-IP, and enhanced by the
replacement algorithm in the module FA-PRA. Otherwise, the cutting condition is presented o the
user through module DEC-CC.
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Figure 3. Flowchart of learning and replacement procedures in EVOLS.

5. Results

As mentioned earlier, the fuzzy ARTMAP neural network is capable of on-line and
off-line learning in response to arhitrary sequences of analogue and binary input/target
patterns. The performance of the fuzzy ARTMAP and the replacement algorithm is
simulated through three classes of experiments on a personal computer (CPU! Pentium IL
266MHz). These experiments are (1) off-line learning performance of the fuzzy ARTMAP
neural network in relation to back-propagation system, (2) on-line learning perforrnance of
the fuzzy ARTMAP neural network, and (3) an application of the replacement algorithm.
Figure 4 shows encoded learning patterns collected to perform these experiments. The 36
learning patterns are composed of 31 machining data presented in the handbook
(Machinability Data Center, 1986) and five effective cutting conditions obtained from the
refarence (Tolouel-Rad, M. and Bidhendi, 1997). The first column in Figure 4 presents
pattern number, and the rest of the columns are mapped with input parameters in Table 1
and 2. The following show procedures and results of experiments performed when the
value of choice parameter @, learning rate A, and vigilance parameter in map field 0w
are 0.001, 0.999, and 1.0 respectively.
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4 0.9000 0.5000 0.8750 0.8000 ... 0.8000 0.7500 0.4366 0.82635
15 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.0423 0.0571
18 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.0141 0.0306
26 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.0423 0.0306
29 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.0141 0.0061

4* 0.9000 0.5000 0.8750 0.8000 ... 0.8000 0.7500 0.3856 0.8265
15' 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.1741 0.7714
18' 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.2075 0.4857
26" 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.3187 0.4163
29' 0.9000 0.5000 0.7500 0.9000 ... 0.8000 0.7500 0.2607 0.3449

Figure 4. Examples of learning patterns.

Case 1 Off-line Learning Performance of the Fuzzy ARTMAP Neural Network

First, the experiments for deciding the values of the network parameters providing
the best learming performance were carried out with the given 31 learning patterns in
off-line learning mode. The network showed the best performance when the values of
vigilance parameters p, and ps were both 0.99. In this case, mean test errors (%) were
0.02 and 0.01, and maximum test errors (%) were 0.64 and 041 for V and f respectively.
Target values were compared with decoded values that were proposed by the fuzzy
ARTMAP in Table 3. In the case of the seventh pattern, the decoded values of Vy and Vi
in the Model-V were 80.0 and 796, and the decoded values of fr and fo were 0.250 and
0.249 respectively in the Model-1.

Table 3. Comparison with target values and caleulated values proposed from fuzzy ARTMAP neural
network, in case p, and p; are 0.99 and 0.99 respectively.

Encoded values Decoded values
Type of Pattern

Model  no. Vr Ve Ir fe Vr Ve Ir fe
(my/min) (m/min) (mm/tooth) (mm/tooth) (m/min) (m/min) (mnz/tooth) (mm/tooth)

Model-V 7 0.4366 0.4338 - - 80.00 79.60 - -

Model-f 7 - - 0.4898 0.4878 - - 0.2500 0.2490

Vy o Target ¥V, Ve @ Calculated ¥, f; - Target | fc . Calculated f

The results tested with same learning patterns in the back-propagation system
showed that mean test errors (%) were 7.6 and 9.1, and maximum test errors (%) were
46.7 and 146.1.

Case 2 On-line Learning Performance of the Fuzzy ARTMAF Neural Network
For the test of on-line learning ability of fuzzy ARTMAP neural network, 31 learning
patterns were presented one by one to the network in an arbitrary order. Table 4 shows
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on-line learning results of the network. As shown in this table, compared with off-line

learning results, the performance of on-line learning does not fall behind that of off-line
learning.

Table 4. On-line learning resulis of the fuzzy ARTMAP neural network.

Value of # of Mean test errors (%) Max. test errors (%)
Type of . . category
vigilance parameters,

Model Oar 0 ART,  ART: d / v 7
o o o s P (min)  (mmioothy  (mimin)  (mmiooth)
Model-V 31 10 0.02 - 0.64 -
_odel-v. =099, =099 —— — = 0 o
Model-f 31 14 - 0.01 - 0.41

Case 3 An Application of the Replacement Algorithm

For an application of the replacement algorithm, learning patterns 4, 15, 18, 26" and
29’ were used. These new data are identical with learning patterns 4, 15, 18, 26 and 29
except ARTs input values, as shown in Figure 4. In Table 5 and Figure 5, the applied
results of the replacement algorithmm are presented. In the case of Model-V, all learning
patterns were assigned to new categories, because the new data were not close enough to
be allocated to previously formed categories. On the other hand, in the case of the
Model-1, learning patterns 4’, 18’ and 29’ were assigned to existing categories.

Table 5. Categories allocated in an application of the replacement algorithm.
(a) Model-V (o, = 099, p, = 0.99)

Allocated Allocated
Pattern categories Pattern categories Notes
no. (Before the no. (After the
replacement) replacement)
4 4 4 11 N
15 0 15' 12 N
18 10 18 13 N
26 9 26 14 N
29 10 29 15 N
(b) Model-f (o, = 0.99, ps =0.99)
Allocated Allocated
Pattern categories Pattern categories Notes
na. (Before the no. (After the
replacement) replacement)
4 4 4 4 E
15 8 15 15 N
18 7 18 2 E
26 7 26’ 16 N
29 13 29 1 E

N, E : Assignment to new and existing calegories respectively
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Figure 5. Categories allocated in an application of the replacement algorithm.

The results of the on-line and off-line learming of the fuzzy ARTMAP neural
network show that mean or max. test errors (%6) are in acceptable error boundaries for V
and f respectively, and by the proposed algorithm, the previously learned information -
weights, categories, etc. - of the network on the cutting conditions is replaced to the new
ones.

6. Conclusion

In this paper, a new methodology that enables the model of generating cutting
conditions to be enhanced while the system is in continual use has been proposed; EVOLS
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(EVOlutionary Learning System of cutting conditions) for milling processes was developed

and

integrated in an operation planning system. Through the experimental run, it was

verified that the necessary part of the model was replaced and improved during its use
without time consuming re-training of the back-propagation neural network.

Although this methodology has been applied only to milling operations in this work, it

also can be applied to turning operations with a little modification on the fuzzy ARTMAP
input parameters. Furthermore, the proposed methodology can be adopted in other software
systems, which make decisions hased on knowledge represented by nurnerical or literal
values.
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