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The existence and uniqueness of solution for the nonlinear fuzzy
differential equations with nonlocal initial condition
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Abstract

In this paper, we study the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equations

with nonlocal initial condition in E%.
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1. Introduction

The issue of solution of fuzzy differential equation
has been discussed by many researchers which plays
an important role in various applications. Kaleva [5]
studied the existence and uniqueness of solution for the
fuzzy differential equation on E” where E” is normal
convex upper semicontinuous and compactly supported
fuzzy sets in R”, and Seikkala [12] studied the fuzzy
initial value problem on E!. Also, Kwun, Kang and
Kim [8] proved the existence of fuzzy solution for the
fuzzy differential equations in Ejy.

In this paper, we consider the existence and
uniqueness of fuzzy solution for the nonlinear fuzzy
differential equations with nonlocal initial condition :

(D= a(DHx(H+ At x(H)
xo=2(0)+ g(t1, o, -, £, 2( - )),
. E{tl,tzy"‘,tp}

(FDE)

where [0, T1—E% is a fuzzy coefficient, nonlinear
function f: [0, TI1xE3—E% and g: [0, 71" x E3—E%
satisfies a global Lipschitz condition.
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fuzzy number, nonlinear fuzzy solution, fuzzy process

We consider a fuzzy graph GCRxR, that is, a

functional fuzzy relation in R* such that its member-
ship function

ue(x, ), (x, WeR?, pelx,»<l0,1],

has the following properties :
1. For all xR,

#elxg, »el0,1] is a convex membership function.
2. For all yeR,

#c(x, v9)€(0,1] is a convex membership function.
3. For all a=[0,1]1, pe(x, v)=a is a convex surface.
4. There exist (x;,y)€R® such that

uelxy, ) =1.

If the above conditions are satisfied, the fuzzy subset
GCR'is called a fuzzy number of dimension 2.

A fuzzy number of dimension 2, G CR® such that
for all (x,y)eR®

16{x, )= pa(x) Nup(y).

We see that fuzzy number of dimension 2, GCR? is
the direct product of two fuzzy numbers A and B are
called noninteracive.

The first projection of G isV,uelx, )= p4(x) and
the second projection of G is
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Vauee{x, )= pup(y).

Let E% be the set of all fuzzy pyramidal numbers in

R’with edges having rectangular bases parallel to the
axis X and Y ([7]).

We denote by fuzzy number in E%, A=/(a,, a),
where a,a; is projection of A4 to axis X and Y
respectively. And 4, and @, are noninteractive fuzzy
number in R.

The a-level set of fuzzy number in E% defined by
(A= {(x;, x) e R* | (x1,x0)€[a1]17% [a5]7}

where operation X is cartesian product of the sets.
Let A,B €E%

A=B&[A]*=[B]* for all a=(0,1].

If A ,BeE%, then for a=(0,11,

[A%,B]*=[a,* b]°x[ay*15,]°, where *, is operation
in E% and %, is operation in EYy

We use the metric d. on E% defined by

dw(A, B)= sup{di([ A", [ B]"):as(0,11}

for all A,BeFE%
In section 2, we study the existence and uniqueness

of the fuzzy solution for the nonlinear fuzzy differential
equation (F.D.E.).

2. Existence and uniqueness of fuzzy
solution

In this section, we consider the existence and unique-
ness of fuzzy solution for the following nonlinear fuzzy
differential equation with nonlocal initial condition :

x(H=a(Dx (D) + At x(D), 0<I<T,
x0=x(0)+g(t1,t2,"',tp,x( . )),
. E{th tz’...’ fp}

(F.DE)

where a:[0, TI—>E% is a fuzzy coefficient, nonlinear
function £ [0, T1x Ei—E% and [0, TI* < E5—E%  a
satisfies global Lipschitz condition.

Let I be a real interval. A mapping x : I —E% is called
a fuzzy process. We set

x2°(8) = x{() xx5(H)
=[x9(0, x5, x[x%(H, x%,(H],

tel, 0<a<l, Xy, xZEEN .
The derivative x(# of a fuzzy process x is defined by

G =) () x(x5) (9
=[(x9) (9, %) DI X[ (x%) (9, (%) (D]
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b
The fuzzy integral fax( Ddt, a,bel is defined by

4 a
[ [ x(nar
ab b
([ xtoan x( [ x5(pap
b b
[ [ xdoar, [ =(0al
¢ b ¢ b
<[ [ x50, [ x5,(nan

Il

I

provided that the Lebesgue integrals on the right exist.

Definition 2.1.

The fuzzy process x:[0, T1—E% is a fuzzy solution
of the (F.D.E.) without inhomogeneous term if and only
if

(%) (0= min {a%(Dx(D: m=1,2, i, j=1, 7},
(%) ()= max (@5 Dl D:m=1,2,7,7=1,7},
X5nk0) = 20— &by, by, o, by, 2( ),

X 0) = XGmr — &% (b1 by, o0t x( 4 ), m=1,2.

Theorem 2.1
For every x,—g(t, ty, -, £y, 2( < )€ E%
D= alHx(¥),

x0=x(0)+g(t1, tz,"',tp,x( * ));
. E{fl,tz,“',tp}

has a unique fuzzy solution xeC([0, TI:E%).
proof.
Assume that xg—g(#, 8, t,x2( ) and a(d are

the elements of E%.
From the definition of fuzzy solution,

(x5 "(t = a% A Dx%A D),
(x5 (D= a%(Dx5,(8), m=1, 2.
and
(x5
= Wl gkt 16 )) exp { [ als)as),
(x5
= (= &t by xC Mexp { [ a%u(as),
m=1,2,
Therefore

[x(H]¢ =x°(9)
= x1(8) xx5(9)
=[x%(0), x10] x [x% (), x%,(H]
={(xa—alt, =, tpx( - ) S{(H}
XA x = golty, =, b, 2( )+ (D)}

where S5, (f) (m=1, 2) is a fuzzy number and



Sm( t)a = [saml(t)n Samr( t)] ,
=[ exv{foa“mz(S)ds}, exo{foa"m(s)ais}]

and S5,(H(m=1,2, j=1I 7 is continuous. That is,

there exists a constant ¢>0 such that | S%5(H | <c,
for all r=[0, T1.

From the definition of fuzzy derivative, we have
(x°) (D ,
= D)X (D) () , ,
= [(x1) (9, (x1) (DI x[(x%) (D, x%,) (D]
= [((x5—g%t, tx(-)) - S0 (t),
((x%,= 51+, £y 2 ))) - §5) (D]
X[ ((xG— &%t tp, 2( - ))) - S%Q (9,
(2T — 8%t1, =, t, 2( - )) + S%,) (D]

Thus, for m=1, 2,

(2%0) (= (&= &ty 1y 2+ )) = S5 (),
(€5) (D= (K= Bty by x( - D) - $5,) (D

Therefore
(x%) () ,
= (Ko &5ty s by (D)) + S5 (D),
t
= (W &ty by 2 M@k Dexp [ a'ud )
= (X0 Gt £ 20 - )))a Wk D Sl D)
= a5 A Dx%A1)
and similarly,
(%) (D= a’% (2% D).
Hence
(x)(® )
= (aD) () x(x5) (9 , ‘
=[x (B, (x7,) (AT <L (x%) (D, (x%) (D]
= [ad”( t)xall( t)’ aalr( t)xnir(t)]
x[a%()x%(D, a%(Hx%, (9]

= (a, (D x()* % (a2 (D, ())°
= (a(Hx(H)°.

Since x($) may be decomposed into its level sets
through the resolution identity, x(£)= S(dx, is a fuzzy
solution.

The (F.D.E) is related to the following fuzzy integral
equations :

x(8) = S(O(xg— g(ty, by, =, tp, 2( +)))

+ "SCt— A, 2(9))ds

xo=2(0)+ g(t1, ta, -+, £y, x( + N EX,
. E{tls 12,"', tp.}

(FILE)

We assume the following hypotheses :

(H1) The nonlinear function £[0, T1x Ey —FE%

satisfies a global Lipschitz condition, that is, there
exists a finite constant K>0

such that

£ Hld8 HX oj24F Aol chE sle ExjMdn RUM

du([As, (N1, [R5, A
< Kd{[x(9]%,[#/(9]%),

where x,yeE% and f is regular function satisfying
Rs,x%) = Rs, 2 xx5)
= f1(s, x1) X fols, x3)

=f1(s,0) x f5(s,0)=f(s,%).

(H2) The nonlinear function
g:10, T)’x E% —E% satisfies a Lipschitz condition, that
is, there exists a finite constant L>0 such that

du(g® (8, ts, -, 1y, (- )), &%, ba, -, tp, Y+ )))
< Ldix®,y%

where x,yeE% and g is regular function satisfying

g(tly 1y, e, l,,,xa)
=gty ty, e, £, X7 X x5)
=gi(t, ty, o, 6 X)X @by, by, oo, 15, %%)
= g{(t by by D)X E(Ey s by, 1)
=g”(tl' ty, e, tp,-x)

Theorem 2.2

Let 750, assume that the function f and g satisfy
the  hypotheses (H1) and (H2) for every
xg—g(ty, by, =, by, 2( - )e Ey, and L+ KD, then

(F.D.E.) has a unique fuzzy solution x=C([0, TI:E%).
proof.
For each o(HekE%, t=[0, 71, define
() (D= S(D(xo—g(t), ta, ", tp e - )))
1)
+ [ St=9)As, ols))ds.

Then, @®¢[0, T] — E% is continuous, and
o: ([0, T ER—C(10, TI-ED.
For e, ¢, C([0, TI: E3),
di{[ 0o (D17, [ @er(D]*)
=dy([ S (D(xo— gy, ty, =+, 0 21( - II”
+1 [ Si(t=9As, o1()as]”,
[ Sy (D(xy— gty £y, -+, by, @2 - IN]®

1 [ S:t= 9, oo 9l )

<di{I1S: (Deg(ty, by, -+, by, 21 - NI,
[sz(t)g(t1 yE, o ¢2( : ))]a)

+ il [ Si(=9fs, pr( s,
[ [ Salt= 9K, o)1)
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<cLdy( (), 9°(+))
+f0dH([S(t—s)f(s, o1 (N]°,

[S(t— A s, pa(sN]Tds
<cLdi{ ¢°C-), ¢2°(+))

+chO’d,,( 21°(3), :°(5)ds.

Therefore

d ((@p (D, (D)9 )
= Sup 4e 0. ¢ (1) (1), (Op2) ()
< cLsup L,g(()'”d[{( 2"(+), 2" (- )

+ CKfOtSUD aE(O,l]dH( ¢1H(S) , ¢2H(S))ds
=cLd (g ()02 +))
+ch0 dol 21(5), @3(9)ds

Hence

H(Op,, Pp;) = SUD g, ﬂdm((¢¢1)(t),(m¢2)( )
<c(L+KDH (¢, 92).

We take sufficiently small T, oL+ KT)<1, then we
obtain @ to be a contraction mapping and hence By
Banach fixed point theorem, (F.D.E.) has a unique fuzzy

solution xe C([0, T1: E&).

3. Examples

Example 3.1. Consider the following nonlinear fuzzy
differential equation with nonlocal initial condition :

(D =a(Ox(D+ At, (D), 0<t< T,
xo=x(0)+ gy, by, -+, tp, 20+ ),
. E{tl,tz,"',tp}

where the fuzzy coefficient a(®= (2, 2)¢.
If the £ 10, TIXES—E%  is

represented by A4 x(D)= 2ex(H?, it is satisfies the
following inequality.

du([At, x(]* [At, ()]
di([ 26()1%, [ 26(5°1)

di(([ (1 + DHx(8)7, (3 — )KxIL1)*],
[A+ UL, B~ DUy (D)D)
X (L1 + oHx54 )%, (3~ ) Kx%,(9)7],
[(1+ DKy5A D)2, (3— K ¥5(H)])
md ([ (x5, (D), (x5,(H)7],
L5, 50D
X di([(x5(D)?, (x5, (D)2,
L5 ()%, (55,(N )

nonlinear  function

i

)
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A

m(y,00 +x%, (DN ¥%, (D +x5,(8)
(max{| y£D—x3D |, 1 ¥, (D—x3(D |)
xmax{ | yoAD—x%(D |, | v3()—x%(H | D
K(dy([x,(H1%, [y, (D]1D
Xdp([x2 (D1 Ly (D] )
Kdy([x(H]*,[x(H]9)

where m=max{(1+ a)¢,(3—a)#} and
K=m(3%,(D+x7,() (v%, (8 + x%.(H). Hence f is sat-
isfied by the hypothesis (H1).

When nonlinear function

&[0, TV x E%4x E%—E% is represented by
gt b, 1,30 ) = 2 ext)

Il

where ¢, is real constants, it satisfies the following
inequality

A& (1, 1 21 )&t by Ly - )
il E ()11 2 cipnl 1)1
ZI cldi( 17 (), 2" ()

Dy=
S comax diyl 0% (4), 2% (1)
LdH( ¢1a( . ), ¢2a( ‘ ))

Il

A

A

A

where constant L= Z}l i 0.
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