비국소 초기 조건을 갖는 비선형 퍼지 미분방정식에 대한 해의 존재성과 유일성

The existence and uniqueness of solution for the nonlinear fuzzy differential equations with nonlocal initial condition

박종서', 김선유', 강점란", 권영철"

Jong-Seo Park, Seon-Yu Kim, Jum-Ran Kang, and Young-Chel Kwun

*진주교육대학교 수학교육과

**동아대학교 수학과

요 약

본 논문에서는 E_N^2 상에서 비국소 초기 조건을 갖는 비선형 퍼지 미분방정식에 대한 퍼지해의 존재성과 유일성에 관한 연구이다.

Abstract

In this paper, we study the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equations with nonlocal initial condition in E_N^2 .

Keywords and Phrases: fuzzy number, nonlinear fuzzy solution, fuzzy process

1. Introduction

The issue of solution of fuzzy differential equation has been discussed by many researchers which plays an important role in various applications. Kaleva [5] studied the existence and uniqueness of solution for the fuzzy differential equation on E^n where E^n is normal convex upper semicontinuous and compactly supported fuzzy sets in R^n , and Seikkala [12] studied the fuzzy initial value problem on E^1 . Also, Kwun, Kang and Kim [8] proved the existence of fuzzy solution for the fuzzy differential equations in E_N .

In this paper, we consider the existence and uniqueness of fuzzy solution for the nonlinear fuzzy differential equations with nonlocal initial condition:

(F.D.E.)
$$\begin{aligned} \dot{x}(t) &= a(t)x(t) + f(t, x(t)) \\ x_0 &= x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)), \\ &\cdot \in \{t_1, t_2, \dots, t_p\} \end{aligned}$$

where $\alpha[0, T] \rightarrow E_N^2$ is a fuzzy coefficient, nonlinear function $f: [0, T] \times E_N^2 \rightarrow E_N^2$ and $g: [0, T]^p \times E_N^2 \rightarrow E_N^2$ satisfies a global Lipschitz condition.

접수일자 : 2001년 9월 15일 완료일자 : 2001년 12월 1일 We consider a fuzzy graph $G \subseteq R \times R$, that is, a functional fuzzy relation in R^2 such that its membership function

$$\mu_G(x, y), (x, y) \in \mathbb{R}^2, \ \mu_G(x, y) \in [0, 1],$$

has the following properties:

1. For all $x_0 \in R$,

 $\mu_G(x_0, y) \in [0, 1]$ is a convex membership function.

2. For all $y_0 \in R$.

 $\mu_G(x, y_0) \in [0, 1]$ is a convex membership function.

- 3. For all $\alpha \in [0,1]$, $\mu_G(x,y) = \alpha$ is a convex surface.
- 4. There exist $(x_1, y_1) \in \mathbb{R}^2$ such that

$$\mu_G(x_1, y_1) = 1.$$

If the above conditions are satisfied, the fuzzy subset $G \subseteq R^2$ is called a fuzzy number of dimension 2.

A fuzzy number of dimension 2, $G \subseteq \mathbb{R}^2$ such that for all $(x, y) \in \mathbb{R}^2$.

$$\mu_G(x, y) = \mu_A(x) \wedge \mu_B(y)$$
.

We see that fuzzy number of dimension 2, $G \subseteq \mathbb{R}^2$ is the direct product of two fuzzy numbers A and B are called noninteracive.

The first projection of G is $\bigvee_{y} \mu_{G}(x, y) = \mu_{A}(x)$ and the second projection of G is

$$\bigvee_{x} \mu_G(x, y) = \mu_B(y)$$
.

Let E_N^2 be the set of all fuzzy pyramidal numbers in R^2 with edges having rectangular bases parallel to the axis X and Y ([7]).

We denote by fuzzy number in E_N^2 , $A = (a_1, a_2)$, where a_1, a_2 is projection of A to axis X and Y respectively. And a_1 and a_2 are noninteractive fuzzy number in R.

The α -level set of fuzzy number in E_N^2 defined by

$$[A]^a = \{(x_1, x_2) \in R^2 \mid (x_1, x_2) \in [a_1]^a \times [a_2]^a\}$$

where operation \times is cartesian product of the sets. Let $A, B \in E_N^2$

$$A = B \Leftrightarrow [A]^{\alpha} = [B]^{\alpha}$$
 for all $\alpha \in (0, 1]$.

If $A, B \in E_N^2$, then for $\alpha \in (0, 1]$,

 $[A*_2B]^a = [a_1*_1b_1]^a \times [a_2*_1b_2]^a$, where $*_2$ is operation in E_N^1 and $*_1$ is operation in E_N^1

We use the metric d_{∞} on E_N^2 defined by

$$d_{\infty}(A, B) = \sup\{d_{H}([A]^{\alpha}, [B]^{\alpha}): \alpha \in (0, 1]\}$$

for all $A, B \in E_N^2$

In section 2, we study the existence and uniqueness of the fuzzy solution for the nonlinear fuzzy differential equation (F.D.E.).

2. Existence and uniqueness of fuzzy solution

In this section, we consider the existence and uniqueness of fuzzy solution for the following nonlinear fuzzy differential equation with nonlocal initial condition:

(F.D.E.)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)), \ 0 \le t \le T, \\ x_0 = x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)), \\ \cdot \in \{t_1, t_2, \dots, t_p\} \end{cases}$$

where $a: [0, T] \rightarrow E_N^2$ is a fuzzy coefficient, nonlinear function $f: [0, T] \times E_N^2 \rightarrow E_N^2$ and $g: [0, T]^p \times E_N^2 \rightarrow E_N^2$ a satisfies global Lipschitz condition.

Let I be a real interval. A mapping $x: I \rightarrow E_N^2$ is called a fuzzy process. We set

$$x^{\alpha}(t) = x_1^{\alpha}(t) \times x_2^{\alpha}(t) = [x_{1l}^{\alpha}(t), x_{1r}^{\alpha}(t)] \times [x_{2l}^{\alpha}(t), x_{2r}^{\alpha}(t)],$$

 $t \in I$, $0 < \alpha \le 1$, $x_1, x_2 \in E_N$.

The derivative x'(t) of a fuzzy process x is defined by

$$\begin{aligned} (x')^{a}(t) &= (x_{1}^{a})'(t) \times (x_{2}^{a})'(t) \\ &= [(x_{1}^{a})'(t), (x_{1}^{a})'(t)] \times [(x_{2}^{a})'(t), (x_{2}^{a})'(t)], \end{aligned}$$

The fuzzy integral
$$\int_a^b x(t)dt$$
, $a,b \in I$ is defined by
$$\left[\int_a^b x(t)dt\right]^a$$

$$= \left(\int_a^b x_1^a(t)dt\right) \times \left(\int_a^b x_2^a(t)dt\right)$$

$$= \left[\int_a^b x_1^a(t)dt, \int_a^b x_1^a(t)dt\right]$$

$$\times \left[\int_a^b x_2^a(t)dt, \int_a^b x_2^a(t)dt\right]$$

provided that the Lebesgue integrals on the right exist.

Definition 2.1.

The fuzzy process $x: [0, T] \rightarrow E_N^2$ is a fuzzy solution of the (F.D.E.) without inhomogeneous term if and only if

$$(x_{ml}^{a})'(t) = \min \{a_{ml}^{a}(t)x_{nj}^{a}(t) : m = 1, 2, i, j = l, r\},$$

$$(x_{mr}^{a})'(t) = \max \{a_{ml}^{a}(t)x_{mj}^{a}(t) : m = 1, 2, i, j = l, r\},$$

$$x_{ml}^{a}(0) = x_{0ml}^{a} - g_{ml}^{a}(t_{1}, t_{2}, \dots, t_{p}, x(\cdot)),$$

$$x_{mr}^{a}(0) = x_{0mr}^{a} - g_{mr}^{a}(t_{1}, t_{2}, \dots, t_{p}, x(\cdot)),$$

$$m = 1, 2.$$

Theorem 2.1

For every $x_0 - g(t_1, t_2, \dots, t_p, x(\cdot)) \in E_N^2$

$$\begin{cases} \dot{x}(t) = a(t)x(t), \\ x_0 = x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)), \\ \cdot \in \{t_1, t_2, \dots, t_p\} \end{cases}$$

has a unique fuzzy solution $x \in C([0, T]: E_N^2)$, proof.

Assume that $x_0 - g(t_1, t_2, \dots, t_p, x(\cdot))$ and a(t) are the elements of E_N^2 .

From the definition of fuzzy solution,

$$(x_{ml}^{a})'(t) = a_{ml}^{a}(t)x_{ml}^{a}(t),$$

 $(x_{mr}^{a})'(t) = a_{mr}^{a}(t)x_{mr}^{a}(t), \quad m=1, 2.$

and

$$(x_{ml}^{a})(t)$$

$$= (x_{0ml}^{a} - g_{ml}^{a}(t_{1}, \dots, t_{p}, x(\cdot))) \exp \left\{ \int_{0}^{t} a_{ml}^{a}(s) ds \right\},$$

$$(x_{mr}^{a})(t)$$

$$= (x_{0mr}^{a} - g_{mr}^{a}(t_{1}, \dots, t_{p}, x(\cdot))) \exp \left\{ \int_{0}^{t} a_{mr}^{a}(s) ds \right\},$$

$$m = 1, 2.$$

Therefore

$$\begin{aligned} [x(t)]^{a} &= x^{a}(t) \\ &= x_{1}^{a}(t) \times x_{2}^{a}(t) \\ &= [x_{1}^{a}(t), x_{1}^{a}(t)] \times [x_{2l}^{a}(t), x_{2r}^{a}(t)] \\ &= \{(x_{01} - g_{1}(t_{1}, \dots, t_{p}, x(\cdot))^{a} \cdot S_{1}^{a}(t)\} \\ &\times \{(x_{02} - g_{2}(t_{1}, \dots, t_{p}, x(\cdot))^{a} \cdot S^{a_{2}}(t)\} \end{aligned}$$

where $S_m^a(t)$ (m=1, 2) is a fuzzy number and

$$S_{m}(t)^{a} = [S_{ml}^{a}(t), S_{mr}^{a}(t)]$$

= $[\exp\{\int_{0}^{t} a_{ml}^{a}(s) ds\}, \exp\{\int_{0}^{t} a_{mr}^{a}(s) ds\}]$

and $S_{mj}^{\alpha}(t)$ (m=1,2, j=l, r) is continuous. That is, there exists a constant c>0 such that $|S_{mj}^{\alpha}(t)| \le c$, for all $t \in [0, T]$.

From the definition of fuzzy derivative, we have

$$\begin{array}{l} (x^{a}) (t) \\ = (x_{1}^{a}) (t) \times (x_{2}^{a}) (t) \\ = [(x_{1l}^{a}) (t), (x_{1r}^{a}) (t)] \times [(x_{2l}^{a}) (t), x_{2r}^{a}) (t)] \\ = [((x_{01l}^{a} - g_{1l}^{a}(t_{1}, \cdots, t_{p}, x(\cdot))) \cdot S_{1l}^{a}) (t), \\ ((x_{01r}^{a} - g_{1r}^{a}(t_{1}, \cdots, t_{p}, x(\cdot))) \cdot S_{1r}^{a}) (t)] \\ \times [((x_{02l}^{a} - g_{2l}^{a}(t_{1}, \cdots, t_{p}, x(\cdot))) \cdot S_{2l}^{a}) (t), \\ ((x_{02r}^{a} - g_{2r}^{a}(t_{1}, \cdots, t_{p}, x(\cdot)) \cdot S_{2r}^{a}) (t)] \end{array}$$

Thus, for m=1, 2,

$$(x_{ml}^{a})(t) = ((x_{0ml}^{a} - g_{ml}^{a}(t_{1}, \dots, t_{p}, x(\cdot))) \cdot S_{ml}^{a})(t),$$

$$(x_{mr}^{a})(t) = ((x_{0mr}^{a} - g_{mr}^{a}(t_{1}, \dots, t_{p}, x(\cdot))) \cdot S_{mr}^{a})(t).$$

Therefore

$$(x_{ml}^{a})'(t)$$

$$=((x_{0ml}^{a}-g_{ml}^{a}(t_{1},\cdots,t_{p},x(\cdot)))\cdot S_{ml}^{a})'(t),$$

$$=(x_{0ml}^{a}-g_{ml}^{a}(t_{1},\cdots,t_{p},x(\cdot)))a_{ml}^{a}(t)\exp\{\int_{0}^{t}a_{ml}^{a}(s)ds\}$$

$$=(x_{0ml}^{a}-g_{ml}^{a}(t_{1},\cdots,t_{p},x(\cdot)))a_{ml}^{a}(t)S_{ml}^{a}(t)$$

$$=a_{ml}^{a}(t)x_{ml}^{a}(t)$$

and similarly,

$$(x_{mr}^{a})'(t) = a_{mr}^{a}(t)x_{mr}^{a}(t).$$

Hence

$$\begin{aligned} &(x^{a}) \cdot (t) \\ &= (x_{1}^{a}) \cdot (t) \times (x_{2}^{a}) \cdot (t) \\ &= [(x_{1}^{a}) \cdot (t), (x_{1r}^{a}) \cdot (t)] \times [(x_{2l}^{a}) \cdot (t), (x_{2r}^{a}) \cdot (t)] \\ &= [a_{1l}^{a}(t)x_{1l}^{a}(t), a_{1r}^{a}(t)x_{1r}^{a}(t)] \\ &\times [a_{2l}^{a}(t)x_{2l}^{a}(t), a_{2r}^{a}(t)x_{2r}^{a}(t)] \\ &= (a_{1}(t)x_{1}(t))^{a} \times (a_{2}(t)x_{2}(t))^{a} \\ &= (a(t)x(t))^{a}. \end{aligned}$$

Since x(t) may be decomposed into its level sets through the resolution identity, $x(t) = S(t)x_0$ is a fuzzy solution.

The (F.D.E.) is related to the following fuzzy integral equations:

(F.I.E.)
$$\begin{cases} x(t) = S(t)(x_0 - g(t_1, t_2, \dots, t_p, x(\cdot))) \\ + \int_0^t S(t - s) f(s, x(s)) ds \\ x_0 = x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)) \in E_N^2, \\ \cdot \in \{t_1, t_2, \dots, t_p.\} \end{cases}$$

We assume the following hypotheses:

(H1) The nonlinear function $f[0, T] \times E_N^2 \to E_N^2$ satisfies a global Lipschitz condition, that is, there exists a finite constant K > 0 such that

$$d_{H}([f(s, x(s))]^{\alpha}, [f(s, y(s))]^{\alpha})$$

$$\leq K d_{H}([x(s)]^{\alpha}, [y(s)]^{\alpha}),$$

where $x, y \in E_N^2$ and f is regular function satisfying $f(s, x^a) = f(s, x_1^a \times x_2^a)$

$$f(s, x^{a}) = f(s, x_{1}^{a} \times x_{2}^{a})$$

$$= f_{1}(s, x_{1}^{a}) \times f_{2}(s, x_{2}^{a})$$

$$= f_{1}^{a}(s, x) \times f_{2}^{a}(s, x) = f^{a}(s, x).$$

(H2) The nonlinear function

 $g:[0, T]^p \times E_N^2 \to E_N^2$ satisfies a Lipschitz condition, that is, there exists a finite constant L > 0 such that

$$d_{H}(g^{\alpha}(t_{1}, t_{2}, \dots, t_{p}, x(\cdot)), g^{\alpha}(t_{1}, t_{2}, \dots, t_{p}, y(\cdot)))$$

$$\leq L d_{H}(x^{\alpha}, y^{\alpha})$$

where $x, y \in E_N^2$ and g is regular function satisfying

$$g(t_1, t_2, \dots, t_p, x^a)$$

$$= g(t_1, t_2, \dots, t_p, x_1^a \times x_2^a)$$

$$= g_1(t_1, t_2, \dots, t_p, x^a) \times g_2(t_1, t_2, \dots, t_p, x^a)$$

$$= g_1^a(t_1, t_2, \dots, t_p, x) \times g_2^a(t_1, t_2, \dots, t_p, x)$$

$$= g^a(t_1, t_2, \dots, t_p, x)$$

Theorem 2.2

Let T > 0, assume that the function f and g satisfy the hypotheses (H1) and (H2) for every $x_0 - g(t_1, t_2, \dots, t_p, x(\cdot)) \in E_N^2$, and c(L + KT) < 1, then (F.D.E.) has a unique fuzzy solution $x \in C([0, T]; E_N^2)$.

For each $\varphi(t) \in E_N^2$, $t \in [0, T]$, define

$$(\boldsymbol{\varphi}\varphi)(t) = S(t)(x_0 - g(t_1, t_2, \dots, t_p, \varphi(\cdot))) + \int_0^{t_0} S(t - s) f(s, \varphi(s)) ds,$$

Then, $\varphi_{\mathcal{C}}[0,T] \to E_N^2$ is continuous, and

$$\Phi: C([0, T]: E_N^2) \to C([0, T]: E_N^2).$$

For $\varphi_1, \varphi_2 \in C([0, T]: E_N^2)$,

$$d_{H}([\boldsymbol{\Phi}\varphi_{1}(t)]^{a}, [\boldsymbol{\Phi}\varphi_{2}(t)]^{a})$$

$$= d_{H}([S_{1}(t)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, \varphi_{1}(\cdot))))]^{a}$$

$$+ [\int_{0}^{t} S_{1}(t - s)f(s, \varphi_{1}(s))ds]^{a},$$

$$[S_{2}(t)(x_{0} - g(t_{1}, t_{2}, \cdots, t_{p}, \varphi_{2}(\cdot)))]^{a}$$

$$+ [\int_{0}^{t} S_{2}(t - s)f(s, \varphi_{2}(s))ds]^{a})$$

$$\leq d_{H}([S_{1}(t)g(t_{1}, t_{2}, \cdots, t_{p}, \varphi_{1}(\cdot))]^{a},$$

$$[S_{2}(t)g(t_{1}, t_{2}, \cdots, t_{p}, \varphi_{2}(\cdot))]^{a})$$

$$+ d_{H}([\int_{0}^{t} S_{1}(t - s)f(s, \varphi_{1}(s))ds]^{a},$$

$$[\int_{0}^{t} S_{2}(t - s)f(s, \varphi_{2}(s))ds]^{a})$$

$$\leq cLd_{H}(\varphi_{1}^{a}(\cdot), \varphi_{2}^{a}(\cdot)) + \int_{0}^{t} d_{H}([S(t-s)f(s, \varphi_{1}(s))]^{a}, [S(t-s)f(s, \varphi_{2}(s))]^{a})ds \leq cLd_{H}(\varphi_{1}^{a}(\cdot), \varphi_{2}^{a}(\cdot)) + cK \int_{0}^{t} d_{H}(\varphi_{1}^{a}(s), \varphi_{2}^{a}(s))ds.$$

Therefore

$$d_{\infty}((\mathbf{0}\varphi_{1})(t), (\mathbf{0}\varphi_{2})(t))$$

$$= \sup_{a \in (0,1]} d_{H}((\mathbf{0}\varphi_{1})^{a}(t), (\mathbf{0}\varphi_{2})^{a}(t))$$

$$\leq cL \sup_{a \in (0,1]} d_{H}(\varphi_{1}^{a}(\cdot), \varphi_{2}^{a}(\cdot))$$

$$+ cK \int_{0}^{t} \sup_{a \in (0,1]} d_{H}(\varphi_{1}^{a}(s), \varphi_{2}^{a}(s)) ds$$

$$= cLd_{\infty}(\varphi_{1}(\cdot), \varphi_{2}(\cdot))$$

$$+ cK \int_{0}^{t} d_{\infty}(\varphi_{1}(s), \varphi_{2}(s)) ds$$

Hence

$$H_{1}(\boldsymbol{\varphi}\varphi_{1},\boldsymbol{\varphi}\varphi_{2}) = \sup_{t \in [0,T]} d_{\infty}((\boldsymbol{\varphi}\varphi_{1})(t),(\boldsymbol{\varphi}\varphi_{2})(t))$$

$$\leq c(L+KT)H_{1}(\varphi_{1},\varphi_{2}).$$

We take sufficiently small T, $c(L+KT) \le 1$, then we obtain Φ to be a contraction mapping and hence By Banach fixed point theorem, (F.D.E.) has a unique fuzzy solution $x \in C([0, T]: E_N^2)$.

3. Examples

Example 3.1. Consider the following nonlinear fuzzy differential equation with nonlocal initial condition:

$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)), 0 \le t \le T, \\ x_0 = x(0) + g(t_1, t_2, \dots, t_p, x(\cdot)), \\ \cdot \in \{t_1, t_2, \dots, t_p\} \end{cases}$$

where the fuzzy coefficient a(t) = (2, 2)t.

If the nonlinear function $f:[0,T]\times E_N^2\to E_N^2$ is represented by $f(t,x(t))=2tx(t)^2$, it is satisfies the following inequality.

$$d_{H}([f(t,x(t))]^{a},[f(t,y(t))]^{a})$$

$$= d_{H}([2tx(t)^{2}]^{a},[2ty(t)^{2}]^{a})$$

$$= d_{H}(([(1+a)t(x_{1}^{a}(t))^{2},(3-a)t(x_{1}^{a},(t))^{2}],$$

$$[(1+a)t(y_{1}^{a}(t))^{2},(3-a)t(y_{1}^{a},(t))^{2}])$$

$$\times ([(1+a)t(x_{2}^{a}(t))^{2},(3-a)t(x_{2}^{a},(t))^{2}],$$

$$[(1+a)t(y_{2}^{a}(t))^{2},(3-a)t(y_{2}^{a},(t))^{2}],$$

$$[(1+a)t(y_{2}^{a}(t))^{2},(3-a)t(y_{2}^{a},(t))^{2}]))$$

$$\leq md_{H}([(x_{1}^{a}(t))^{2},(x_{1}^{a}(t))^{2}],$$

$$[(y_{1}^{a}(t))^{2},(y_{1}^{a}(t))^{2}])$$

$$\times d_{H}([(x_{2}^{a}(t))^{2},(x_{2}^{a}(t))^{2}],$$

$$[(y_{2}^{a}(t))^{2},(y_{2}^{a}(t))^{2}])$$

$$\leq m(y_{1r}^{a}(t) + x_{1r}^{a}(t))(y_{2r}^{a}(t) + x_{2r}^{a}(t))$$

$$(\max\{ | y_{1}^{a}(t) - x_{1r}^{a}(t) |, | y_{1r}^{a}(t) - x_{1r}^{a}(t) | \}$$

$$\times \max\{ | y_{2r}^{a}(t) - x_{2r}^{a}(t) |, | y_{2r}^{a}(t) - x_{2r}^{a}(t) | \})$$

$$= K(d_{H}([x_{1}(t)]^{a}, [y_{1}(t)]^{a})$$

$$\times d_{H}([x_{2}(t)]^{a}, [y_{2}(t)]^{a}))$$

$$= Kd_{H}([x(t)]^{a}, [y(t)]^{a})$$

where $m = \max\{(1+\alpha)t, (3-\alpha)t\}$ and

 $K = m(y_{1r}^{\alpha}(t) + x_{1r}^{\alpha}(t))(y_{2r}^{\alpha}(t) + x_{2r}^{\alpha}(t))$. Hence f is satisfied by the hypothesis (H1).

When nonlinear function

g:
$$[0, T]^p \times E_N^2 \times E_N^2 \rightarrow E_N^2$$
 is represented by

$$g(t_1, t_2, \dots, t_p, x(\cdot)) = \sum_{k=1}^{p} c_k x(t_k)$$

where c_k is real constants, it satisfies the following inequality

$$d_{H}(g^{a}(t_{1}, t_{2}, \dots, t_{p}, \varphi_{1}(\cdot)), g^{a}(t_{1}, t_{2}, \dots, t_{p}, \varphi_{2}(\cdot)))$$

$$= d_{H}([\sum_{k=1}^{p} c_{k}\varphi_{1}(t_{k})]^{a}, [\sum_{k=1}^{p} c_{k}\varphi_{2}(t_{k})]^{a})$$

$$\leq \sum_{k=1}^{p} c_{k}d_{H}(\varphi_{1}^{a}(t_{k}), \varphi_{2}^{a}(t_{k}))$$

$$\leq \sum_{k=1}^{p} c_{k} \max_{t_{k}} d_{H}(\varphi_{1}^{a}(t_{k}), \varphi_{2}^{a}(t_{k}))$$

$$\leq Ld_{H}(\varphi_{1}^{a}(\cdot), \varphi_{2}^{a}(\cdot))$$

where constant $L = \sum_{k=1}^{b} c_k > 0$.

References

- [1] P. Diamond and P. E. Kloeden, paper Optimization under uncertainty, Proceedings 3rd IPMU Congress, B. Bouchon-Meunier and R. R. Yager, Paris, 247-249, (1990).
- [2] D. Dubois and H. Prade, Towards fuzzy differential calculus Part I: Integration of fuzzy mappings, Fuzzy Sets and Systems, 8, 1-17, (1982).
- [3] D. Dubois and H. Prade, Towards fuzzy differential calculus Part II: Integration of fuzzy mappings, Fuzzy Sets and Systems, 8, 105-116, (1982).
- [4] L. M. Hocking, Optimal control an introduction to the theory with applications, Oxford applied Mathematics and Computing Science Series Clarendon Press, (1991).
- [5] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301-317, (1987).
- [6] M. K. Kang and J. R. Kang, The existence of fuzzy optimal control for the nonlinear fuzzy control system, Far East J. Appl. Math., 4(1), 79 - 90, (2000).
- [7] A. Kaufmann and M. M. Gupta, Introduction to fuzzy arithmetic, Van Nostrand Reinhold, (1991).
- [8] Y. C. Kwun, J. R. Kang and S. Y. Kim, The existence of fuzzy optimal control for the nonlinear fuzzy differential system with nonlocal initial condition, J. Fuzzy Logic and Intelligent Systems, 10(1), 6 - 11. (2000).
- [9] Y. C. Kwun and D. G. Park, Optimal control problem for fuzzy differential equations, Proceeding of the

Korea-Vietnam Joint Seminar, 103 - 114, (1998).

- [10] M. Mizumoto and K. Tanaka, Some properties of fuzzy numbers, North-Holland Publishing Company, (1979).
- [11] J. S. Park, Existence, uniqueness and norm estimate of nonlinear delay parabolic equations with nonlocal initial condition under boundary input, Chinju Nat. Univ. Edu. Res. Sci. Edu. 24, 69-83, (1998).
- [12] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24, 319 -330, (1987).

저 자 소 개

박 종 서

1995년 : 동아대학교 대학원 수학과 이학박사 1997년 ~ 현재 진주교육대학 수학교육과 조교수

관심분야 : 응용수학, 퍼지이론 및 비선형 해석학

Phone : 055-740-1238 Fax : 055-740-1236 E-mail : parkjs@cue.ac.kr

김 선 유

1993년 : 동아대학교 대학원 수학과 이학박사 1995년~현재 진주교육대학 수학교육과 교수 관심분야 : 해석학, 응용수학

강 점 란

2001년 : 동아대학교 대학원 수학과 박사과정

관심분야: 퍼지수, 제어 Phone : 051-200-7216 Fax : 051-200-7217

E-mail: pointegg@hanmail.net

권 영 철

1990년 : 동아대학교 대학원 수학과 이학박사(응용수학 전공)

1992년~현재 동아대학교 자연과학부 부교수

1994년~1995년 : 일본고베대학 시스템공학부 객원 조교수

관심분야: 퍼지미분 시스템, 퍼지수, 제어가능성, 관측가능성

Phone : 051-200-7216 Fax : 051-200-7217

E-mail: yckwun@daunet.donga.ac.kr