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Wideband Time-Frequency Symbols and their Applications
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Abstract

We generalize the wideband PO-Weyl symbol (POWS) and the wideband spreading function (WSF) using the
generalized warping function. The new generalized POWS and WSF are useful for analyzing systems and
communication channels producing generalized time shifts. We also investigate the relationship between the affine
Weyl symbol (AWS) and the POWS. By using specific warping functions, we derive new POWS and WSF as analysis
tools for systems and communication channels with non-hnear group delay characteristics. The new POWS preserves
specific types of changes imposed on random processes. The new WSFE provides a new interpretation of outputs of
system and communication channel as weighted superpositions of non-lincar time shifts on the input. It is compared
to the conventional method obtaining outputs of system and communication channel as a convolution integration of the
input with the impulse response of the system and the communication channel. The convolution integration can be
interpreted as weighted superpositions of linear time shifts on the input where the weight is the impulse response of
the system and the communication channel. Application examples in analysis and detection demonstrate the advantages
of our new results.
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When a wideband LTV system B defined on L»(R') in
frequency domain produces constant time shifts, scale
changes and hyperbolic time shifts in the output, the
NWS and NSF are not adequate tools for analyzing such
a wideband system. Shenoy and Parks were the first
people who introduced the concept of the affine Weyl
symbol (AWS) and wideband spreading function (WSF)
to express the quadratic form as the 2-D inner product

1. Introduction

The conventional narrowband Weyl symbol (NWS)
and narrowband spreading function (NSF) have been
successfully used for analyzing LTV systems producing
constant time shifts and constant frequency shifts or
nonstationary random processes undergoing constant
time shifts and constant frequency shifts [6,11].

The NWS and NSF are defined as

NW’SI(t,f)= rKL(t+—é—_ ,t__22:)e' JEirrj‘a,z_

NSI""L(T, V):Jf NVVSL(f,f)QJ}HK“D fr)dtdf

where K,(t, 7 ) is the kernel of the operator L defined
on Ly(R) [2]. The NSF provides important information on
the amount of time lags and frequency lags induced by a
system. The quadratic form of a random process x(t), |
(L x)(O)x(t)dt, can be expressed as the 2-D inner
product of the NWS of the operator L and the Wigner
distribution of the process WDx(t,f) or the 2-D inner
product of the NSF of L and the narrowband ambiguity
function of the process AFx(r.v),

[ (Dar= [ [ NS (1, WD 4 (1, paba
= { fNSF (r,v) AF ;" (t, v)drdy

where WDx(t,0)= [ x(t+ z /2) x'(t z /2 e dr and
AFx(z,v)= [ x(t+ 1 /2) X"t~ ¢ /2) e ™ dt [3].
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of the AWS of the operator B and the affine Wigner
distribution of the process AWDx(p,f) or the 2-D inner
product of the WSF of B and the wideband ambiguity
function of the process WAFx(7,e) [10,12] where
AWDx and WAFx are defined as

AWD ((p, )= £ [ 4 (f, M @)e™da, p>0,

WAF x(r,a) = f '\ (f, DA @) df

where g 1(f, @) = X(AA(@e )X " (fA2)e ) and M a )=
@ /(2sinh( @ /2)).

In [4,5], we defined the P, Weyl symbol (PoWS) based
on the Bertrand Py-distribution as an affine version of
the Weyl symbol. The AWS and the PoWS have the
same relationship as the affine Wigner distribution and
the Bertrand unitary Po-distribution do. These AWS and
PoWS  are adequate tools for analyzing systems
producing time shifts, scale changes and hyperbolic time
shifts in the output. However, compared to the study on
the narrowhband Weyl correspondence and  its
generalization [56,11], the study on the wideband Weyl
correspondence and its generalization have not been well
developed. For example, if a system produces dispersive
(non-constant) time shifts such as hyperbolic time shifts
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in the output, neither the AWS (or PoWS) nor the WSF
15 proper tools for analyzing such a system.

In this paper, we investigate the theory related to the
wideband Weyl correspondence and its generalization. In
Section I, we review the AWS, PoWS and WSF. We
provide the relationship between the AWS and PoWS
and investigate important properties of the PoWS. In
Section I, we generalize the PoWS and WSF to provide
appropriate  analysis  tools  for systems producing
dispersive time shifts. We investigate relationships
between the generalized formulation and the conventional
formulation of the PoWS and WSF. We also derive
special cases of the generalized formulation of the PoWS
and WSF. In Section IV, we demonstrate the advantages
of new results by providing application examples.

2. Affine Formulation of The Weyl Symbol

Shenoy and Parks introduced the concept of an affine
version of the Weyl correspondence [12]. They used the
affine Weyl symbol and wideband spreading function in
the quadratic form of a random process {10,12], ie.

= [ [ W5F o(z.0) WAF (2, @) drda.

The AWS and WSF can be derived as
AVS (o )~ £ | Tk @e  ft@e * alare " da, (1)
WSF (r.0) = [ T fi@e * ftae * X @e™af. (2

The AWS is the 2-D Fourier transform of the WSF [12]

AVS wp. N = [ [ WSF sz, @)e "™ "drda,

Shenoy and Parks also showed the system output can
be written as a weighted superposition of constant
time- shifted and scale changed versions of the input
signal [12], i.c.

B0 = [ [WSF r e 2 —rlo x(- Lo drda

where r'(a)=re a/2/AM(a). Hence, the weighting
function, WSF, provides information on the amount of
time shifts and scale changes induced by the system.

We define a wideband version of the Weyl symbol
(PoWS) [5] based on the Bertrand unitary PO-distribution
[17 as

POS (1, ) =1 | T fM@)e * fl@e )M @e” ™ da. (3)

The relationship between the AWS in (1) and the
PoWS in (3) is

P WS (t,N=AWS n(p, Dl pe— .
The relationship between the PoWS and the WSFE is [5]
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PS t, )= [ [ WSF e, )¢ *"7 @drda, (4)

The PyWS preserves constant time shifts, scale
changes and hyperbolic time shifts on a random process

Y(HA=X(He PSP WS (t, V=P WS, (t—1,/,

Y(f):'*\/%X(%)QP“WSR}(L]‘)ZPOWSR\(a'L‘,‘g),
Y() = e FOX(NSP WS o (1, ) = P, WSR\,(t—lf )

where Rx and Ry are the correlation operators of X(f)
and Y(f), respectively. The kernel of Rx is defined as
KRx(f), £2=E[X(f)) X'(f2] with the expectation operator
E[ -1

3. Generalized Formulation of The Affine
Weyl Symbol

3.1 Generalized Po;-Weyl Symbol
The generalized PoWS, GPOWS, is defined as

GPWS W1, H =16 [ I AE(f. ), B(f, - ) -
A a)efzﬂtaf(/)/¢(,0

lp(5(f, @) p(E(f, — a))| V

where T'y(fi,12) is the kernel of Y defined on La([c,d]), =
(f,2)=8 (EHOMa)e”), & (E(b)=b, and 9(f)=&'(f). Here,
[cd] is determined by the domain of the one to one
warping function &(b). The GPyWSY preserves the
generalized time shifts on a random process X(f), Le

Y() = (D X)N=CP WS (8, )= GPy WS  ({— Ep( ). N

B da, (5)

s

where (DU X)(f)=¢ 7755
time-shifted signal.

The generalized wideband spreading function, GWSFy(T,
a), is defined as

X(f) is the generalized

GHSF (8.0 = [ T (5 (0). @), 2 (8.~ a) -

b/](a,)eonbE
(B (b, a) e B (&), — a7 P ®

The GWSF provides information on the amount of
generalized time shifts induced by an LTV svstem.
Hence, the system output can now be expressed as a
weighted superposition of generalized time-shifted and
generalized warped scale-changed versions of the input
signal, 1Le.

(YO = | [ GUSF £ (W, ' C WD e Xf)dida

Ala)

(7

where the generalized warping is (W& X)(f) = X '(f)) /
oz 'O, the scale operator (C, X)(DH=X(/a)/lal"”” and W
2 'Ca W is the generalized warped scale operator[8].

The GPoWSY and GWSFy have the following rela-
tionship



Table 1. Examples of various PO-Weyl symbols, operator
outputs, and wideband spreading functions.

F .
Cases T WSF Operator output
symbol
Conventio Gt glr)s(c) GIHX(D)
nal o H(tH VEienk oo -l [ L meDyxtaan o
1 ) 1,
Exponenti #(/) G 0 (DN v 7 GUOX)
al h(t) K a4l [~ X0 dv
AN &P P DN COOXNNV @ (D
Power — -
Vaes (e | Lo tenimna, e d s —;;,;;) j'—Vy* 11(—{ )X (v
Power | 7 Xle./ G o8 &L’ X
exponenti _ _
al h(t) i H( f X % (&) - ;E) f H(f~nX(0dv

Table 2. Various wideband Weyl symbols and wideband
spreading functions for a given warping
function & (b). Here, Y is defined based on the
domain of & (b).

- . Wideband spreading W
&(b) {Time-freq. representation .
function
1 to 1] crwsiaen=roms, w Cyfp.8m GUSF \(£.a) = WSF oy, (£, )
b PS4/ inl3) WSE {7, ) in(D)

Eon(D)|  EPsCLn=PS, W e L) EWSF (§,0)=WSF , v (L&)

&.(b) PiSY(UN=PAS oy ,,;’(,) e PWSF (L ay= WSEF vy, (L@}
EUB) | EPSTUN =Sy e (e J EWSE (. a) = USF oy (L)

i

GUSF (£, )= T, [ Al F oGPy US (111, ®)

where « (f)= a &(f)/p(f) and the generalized transform
dependent on the warping function &(b) is

GT, LX(N1= 09 (A= [ XA A" af. ©)

When &(b)=b, the generalized transform reduces to the
Fourier transform and the relationship in (8) simplifies to
the relationship between the POWS and WSF in (4). In
Table 1, we provides special examples of the GPoWS, its
corresponding GWSF and operator output. For example,
if the operator output is the product of the input signal
X(f) and a function G(f) (column 5, row 5), then the
GWSF is the generalized transform of G(f).

The GPyWS and GWSF have the warping relationship
with the PoWS and WSF in (3) and (2), respectively

(10
(1D

GPoWS UL )= P WS .y, (5 E0)
GWSF (&, a) = WSF yyw (& o).
Depending on the warping function & (b), we can

derive a specific PoWS and WSF which are proper for
analyzing systems producing a certain type of dispersive
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time shifts. For example, if & (b)=b, we obtain the
conventional PoWS and WSF from (5) and (6). In the
following, we will show other special cases of the
GPoWS and GWSF (See Table 2.).

3.2 Exponential PO-Weyl Symbol

For an operator @ defined on I2(R) in frequency,
when the warping function &(h)=e", the GPoWS and the
GWSF  simplify to the exponential Po-Weyl symbol
(EPoWS)  and  the exponential  wideband  spreading
function (EWSF), respectively. Table 2 shows definitions
of the EPyWS and the EWSF (See row 3). The EPyWS
preserves exponential time shifts and constant frequency
shifts on a random process X(f), i.e.

Y(H=(E XNN=EP WS, (t, )= EP WS, (t— e, D,
Y() = (M XNH=EPUS (1, h = EP WS x (t, f— V)

where (M, X)(H=X(f-,) and (EX)(H=e ™' X(f) are
the constant frequency-shifted signal and exponentially
time-shifted signal, respectively [7]. The EWSF provides
an important interpretation on the system output as a
weighted superposition of exponential time-shifted and
constant frequency-shifted versions of the input signal
where the weighting function is the EWSF

i

QN = | [ EWSF ((£.a)(M  E ooy XN Nlida,

The relationship between the EPoWS and the EWSF
is given as

EWSF (£, @)= ET ;.. \Ve'F, . JEPWS o(1,N})

where ETi<{X(f)}= | X(f) & ™" df. Table 1 provides
special examples of the EPoWS, its corresponding EWSF
and operator output. For example, if the system output is
the convolution of the input signal X(f) and a function
H(f) (column 5, row 9), then the EPyWS is the inverse
Fourier transform of H(f).

3.3 Power Po-Wey! Symbol

When the warping function is &(b)=%&(b) = b, b>0,
the power PoWS, POWS"™, and the power WSF, PWSF®,
are obtained from (10) and (11) (See row 5 in Table 2.).
Note that when k=1, the PyWS™ and the PWSF™
simplify to the PoWS and WSF, respectively. The PoWS
* preserves power time shifts on a random process

Y(H={( P, X)(f)=
PoWS g, (= PoUSx, P (1=t (D, N,

where (P(™ X)(N=e ™™ X(1) is the power time shift
operator and @(f)=&'(f). The system output is expressed
as a weighted superposition of the power time-shifted
input signal

(BN = [ [ PWSF, (L) ( W. ™' C iy W,
' Ps’e“:'//l(a) (X)X)(f)dcdd
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where Wi, 'CaWs, is the power warped scale operator
with the power warping operator (Wee X)(0)=X( &, '(f)
)/ ok &k " [8]. The PoWS"™ and the PWSE®
have the relationship

Ae
X

PUSE ™ (¢ )= PT(I)/‘*: F, {Pous®™ w(EAH,

where PTx)f— UXH)=1 XD lox(DI1/2 ej2nlZk(f) df.

3.4 Power Exponential Po-Wey! Symbol

We obtain the K-th power exponential PoWS, EPgWS
, and the K th power exponential WSE, EWSF"™, for
an operator @ on L:(R), by warping the PoWS and the
WSF as shown in row 6 of Table 2. Note that when K
=1, we obtain the EPgWS and the EWSF. The EPsWS,'"™'
preserves power exponential time shifts and constant
frequency shifts on a random process

K

Y(H=( E: “{)X)(f)*> EP(»WSk.v (X,(lvf): EP()VVSI\'\ m(l“lfe‘u.ﬁ
V(A= (M. X)NH= EPUS (8, )= EPUS o “ (1. F= 1)

where the power exponential time shift operator is (E¢
*OX)B=X(De P [8]. The system output can be
expressed as a weighted superposition of power exponential
time-shifted and constant frequency -shifted versions of
the input signal, i.e.

(O = [ [ EUSF " (5,00 (M, E 4o " XN Ndtda.

The relation between the EP,WS™ and the EWSE™ is
given as

a

Y - Ral hE)
EWSFQ(“({,a):T}?JJEP(,WSQ(”(L—]—Q)%@‘M P

4. Application Examples

4.1 Analysis Applications
4.1.1 Narrowband WS vs. PoWS.

In order to demonstrate the importance of the PoWS,
we analyze deterministic signals with random weights
X(H=2 am X)), m=1,23. Here, @ are uncorrelated,
zero mean random weights and Xu(D=[f] @ 1™ "0 >0,
m=1,23 are hyperbolic FM, deterministic signals. Note
that cach signal term Xm(f) has hyperbolic group delay,
2m/f. One can show that the PoWS in (3) of the
correlation operator Rx simplifies to

P(\VVSR\(LJ{):ZV[EU& ml Q]P\J/I/SR\“(t’f)

=S Hlle,) 1 8=, po. (12)

s

Figure 1 shows (a) the narrowband WS versus (b) the
PoWS of Rx of a windowed X(f). Both show time-
varying transfer functions with  hyperbolic TF
charactenistics. The advantage of the POWS in (12), is
that it is ideally localized along the three group delay
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curves t=2m/f in the TF plane.

Fig. 1. (a) narrowband Weyl symbol, NWSRx(t, f), and
(b) wideband Py-Weyl symbol, PoWSRx(t, f), of
a windowed hyperbolic process X(f).

The disadvantage of the narrowband WS is that it
produces spurious components along hyperbolae since it
does not match the intrinsic hyperbolic TF characteristics.

4.1.2 PoWS vs. Power Exponential PoWS.

In this analysis example, we compare the PoWS with
the EPoWS™ to demonstrate the importance of our new
generalization. The process has the power exponential
TE characteristics, ie. X(N=2 ;i Xi(f) where a; are
uncorrelated, zero-mean random weights and Xi(f)=!«
[(le*le =T H T are power exponential FM, deterministic
signals with ¢1=1, =2, ¢3=3.6 and «=2.3. Figure 2
shows (a) the PaWS and (b) the EP;WS'*’ of Rx of a
windowed X(f). The

Fig. 2. (a) P»-Weyl symbol, PoWSp«(t, f), and (b) power
exponential Po-Weyl symbol, EPsWS'“i(t, 1), of
a windowed power exponential process X(f).

EP,WS™  shows ideally localized TF representation
along the three group delay curves t=cix " in the TF
plane. The PoWS shows spurious components inside each
group delay curve since it does not match the power
exponential TF characteristics.

4.2 Detection Application

Sibul et al. formulated a detector in the time-scale
domain using the wideband ambiguity function [9]. For
the received signal r(t)=y(t)+n{t) where yv(t)=(L x)(t) is
the output of a channel L for the transmitted signal x(t)
and n(t) is the nonstationary mean (aussian
random noise, Sibul et al. implemented the estimator-
correlator using the WSIF and the WAF

Zero

A:.j‘f WSFL'(T’a)WAFXRH(T,a)dm’a



where WSF'i(z.,a)=[ JSCilr,a,t' ¢ YWAFxu( ",
eddr'de’, n=/ Ku '(t,z) riz) dr, when the
signal present, r(t)=] K '(t,z) r{z) dz, when the
signal absent, and Ro(f) and Ri(f) are Fourier transforms
of ro{t) and ni(t), respectively. Here, the scattering
function SCi(z,a,7 a)=E[WSF.(r,a)WSF/ (7" a")]
is assumed to be known [9]. It can be shown that the
estimator-correlator is also formulated wusing the
generalized WSF and the generalized WAF

A= [ [ GWSF, (£ ) GWAF s, (%, a)dtda

where GWAFx(T, @ )>WAFwex({, @) and GWSF'L(L,
a)=[ [ GSCL, e, ) GWAFxu({',e") di'de’ with
GSCL, a U, a N=E[GWSF.(L, @ \YGWSF (L', a ).

5. Conclusion

In this paper, using warping techniques, we derived
the new generalized PoWS and the generalized WSF.
For example, we derived the exponential PoWS and the
exponential WSF, the power PoWS and the power WSF,
and the power exponential PoWS and the power
exponential WSFE, These generalized PoWS and WSFE are
useful for systems producing generalized time shifts and
generalized warped scale changes on the signal whereas
the conventional PoWS and WSF are useful for systems

producing constant time shifts and scale changes on
the signal. We also investigated the relationship between
the AWS and the PoWS, and the properties of the PoWS.
We demonstrated the advantages of our new results by
providing application examples.
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