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On Fuzzy Qoutient Spaces

Abstract

In this paper, we introduce the concept of fuzzy quotient spaces as the new ways and investigate their some

properties.

Key words ; and phrases

1. Introduction and Preliminaries

C.KWong, Pu and Liu introduced the concept of fuzzy
quotient spaces, respectively and investigated its some
properties. In this paper, we introduce the concept of
fuzzy quotient spaces as the new ways and study their
some properties.

Now we will list some concepts and results with
respect to fuzzy set theory and fuzzy topology needed in
the next sections.

Let I=[0,1]. For a set X, let I* be the collection of
all the mappings from X into I Then each member of
¥, A1 X — ] is called a fuzzy set in X. In particular,
¢ and X can be considered as fuzzy sets in X defined
by ¢(x)=0 and X(x)=1 for each x=X, respectively.
Furthermore, ( I¥, U, N, ¢ ) is a completely distributive
lattice for which De Morgan’s laws hold(cf.[1,5,12]).

The concept of a fuzzy point in a set its related
notions and their properties refer to [5,7,9,11]. We will
denote the set of all fuzzy points in a set X as F,(X).

Definition 1.1[1]. Let s : X — Y be a mapping, let 4

= I* and let BE IY. Then :

(1) The inverse image of B under 7, denoted by £~ '(B)
is a fuzzy set in X defined by for each xeX,
[F (B0 = BAx) =(B- Hx).

(2) The image of A under /, denoted by AA) is a fuzzy
set in Y denoted by for each y& Y,

if ye AX)

_ [ sup . nAx),
Aay={gP if ye A X)
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fuzzy quotient space, fuzzy quotient mapping.

By the above definition, £ : I* — IY and 7 ' : I¥
— [* are mappings.

Result 1.A[1,11} Let f:X — Y, let {4, . CIF
and let {B,) ,«.C I'. Then :

W By=U B (N BY= ) FU(B,.
@AY Aa)=UAA), AN A)= NAA.

(3 AfUB)HC B, for each BE I'.
In particular, if # is surjective, then Af (B))= B.
(4) AC f Y (AA)), for each Ae I*.
In particular, if £ is injective, then f '(KA))= A.
(5 Let g Y — Z be a mapping. If BE F%, then
(g-» '"(By=r""(g7 " (B):
If A= I¥ then (g- H(A)=g(KA)).
(6) If fis bijective, then [AA)] ‘=AA°) for each AE
I’

Definition 1.2[1]. A family T of fuzzy sets in a set X
1s called a fuzzy topology on X if it satisfies the
following conditions:

(a) 6, X €7.
(b) If A, BETJ, then AN BET.
@I {A}eeaCT, then U A, 7.

The pair ( X,7J) is called a fuzzy topological space(in
short, fts). Every member of T is called a TJ-open
fuzzy set(in short, F-open set) in X. A fuzzy set A is
a 7 -closed fuzzy set(in short, F-closed set) if and only
if A°is F-open in X.

Notation 1.3. (1) For a fts X, FO(X) and FC(X) denote
the family of all F-open sets and F-closed sets in X,



respectively.
(2) For a set X, T #(X) denotes the family of all fuzzy
topology on X.
1t is clear that (7 p(X), C) is a complete lattice.

Definition 1.4[5]. Let X be an fts, let A€ I* and let

2, € F(X). Then A is called :

(1) a fuzzy neighborhood(in short, F-nbd) of x, if there
exists a F-open set U such that x,& UC A, The
family of all the F-nbds of x, is called the system
of F-nbds of x,, and will be denoted by N «x ;).

(2) a Q-neighborhood(in short, Q-nbd) of x; if there
exists a F-open set U such that x,q UC A. The
family of all the Q-nbds of x,; is called the system
of Q-nbds of x,, and will be denoted by N o(x ;).

Definition 15[45]. Let X be a fts and let Ae I*,
Then the closure of A, denoted by cl A, is defined by:
clA = ({FeFCO(X): ACF}.
It is clear that cl A is the smallest F-closed set
containing A and cl{cl A) = cl A.

Definition 16[45]. Let X be a fts and let Ae IX.
Then the interior of A, denoted by int A, is defined by:
int A = {{UesFO(X): UcA}.
It is clear that int A is the largest
contained in A and int(int A) = int 4.

F-open set

Definition 1.7[1]. A mapping f: (X, 7) — (¥, T#) is
said to be fuzzy continuous(in short, F-continuous) if
FUBET for each BE T+ The mapping f is called a
fuzzy homeomorphism(in short, F-homeomorphism) if f
is bijective, and both f and f ! are F-continuous.

Result 1.BI1)L.If f: X > Yand g: Y — Zare F
~continuous, then g-f: X — Zis F-continuous.

Definition 1.8[1,8]. Let X and Y be fts’s. Then a
mapping f: X — Y said to be :

(1) fuzzy open(in short, F-open) if for each UE FO(X),
AE FAY).

(2) fuzzy closed(in short, F-closed) if for each F&
FCO(X), AF)E FAY).

Definition 19[6,8]. Let (X, 7x) be fts, let R an
equivalence relation on X, let X/R the usual quotient
set and let 7 : X — X/R the usual projection{quotient
T g = ABETYE

7 HB)YE T x} is a fuzzy topology on X/R. In this case,

mapping). Then the collection

T g is called the fuzzy quotient topology on X/R, the
pair ( X/R, T xx) the fuzzy quotient space of ( X,7) and
7z the fuzzy quotient mapping.

Hx| &37tol 75tod

Result 1.C[8, Theorem 4.11. (1)

fuzzy topology on X/R for which =z is F-continuous.
(2) Let (Y, 7 ) be a fts and let g : (X/R, 3 xp) —
(Y,7 y) a mapping. Then g is F-continuous if and

T xr 1s the largest

only if g-x is F-continuous.

2. Fuzzy quotient spaces defined by the
first way

After we consider the following result, we introduce
the concept of a fuzzy quotient space defined by the first
way and study its some properties.

Result 2.A[2]. Let ( X, 7 x) be a fts, let Y a set and let
£ XY a mapping. Let T y= {UsI": fF Y (U)e Ty}
Then we have the following properties :

(a) T yis a fuzzy topology on Y.
(b) f: X—Y is F-continuous.

(¢) If U is a fuzzy topology on Y such that
£ X--(Y,U) is F-continuous, then 7 y is finer
than U.

Definition 2.1. Let ( X, Tx) be a fts, let ¥ a set, and
let f: X—Y a surjection. Then 7 y= {UeI": f (V)
e 7 ) is called the fuzzy quotient topology on Y
induced by f. The pair (Y,7J y) is called a fuzzy
quotient space of X and f a fuzzy quotient mapping.

By Result 2.A, the fuzzy quotient mapping f is not
only F-continuous, but 7 y is the finest fuzzy topology
on Y for which f is F-continuous.

The following result is an immediate consequence of
Definition 2.1 :

Proposition 2.2. Let ( Y, 7 y) be a fuzzy quotient space
of a fts ( X, 7 y) with fuzzy quotient mapping f. Then
FeFC(Y) if and only if f '(F) € FO(X).

Theorem 2.3. Let (X, Ty) and (Y, T) be fts's, let
f: X— Y F-continuous and surjective and let 7y the
fuzzy quotient topology on Y induced by f.If 7 is F
—-open or F-closed, then T ,= 7.

(Proof) Suppose f is F-open. By Result 2.A(c), 7C
Jy. Let Ue Ty Then f '(U)e Ty, by the
definition of 7. Since f is F-open, f(f '(U)e 7.
Since f is surjective, f(f (U =U. Thus Ue 7.
So TyC T. Hence Ty= 7.

Now suppose f is F-closed. It is sufficent to show
that 7,2 7. let Ue Ty. Then s (U)e Tx by
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the Definition 21 of Ty Thus [F'(NI° =
F WUy e FC(X). Since f is F-closed, f(f '(U%))
is  F-closed in (Y,7y). Since s 1is surjective,
FUFHUS)) = U, Thus UF is F-closed in (Y, T y).
So Us 7 and thus 7yC 3. Hence Ty= 7.

Theorem 2.3 tells us that if /F: (X, Tx)—(Y,7)is F
-open{or F-closed), F-continuous and surjective, then
f is a fuzzy quotient mapping.

Theorem 2.4. The composition of two fuzzy quotient
mappings is a fuzzy quotient mapping.

(Proof) Let 7: (X, Tx) (Y, T y)and g: (¥, T y)—
(Z,7 2 be fuzzy quotient mappings. Then clearly, by
Definition 2.1, g- f: X—2 is surjective. Let 7 be the
fuzzy quotient topology on Z induced by g- f. By
Result 2.Alc), 7,C 7. Let We 7. Then, by Definition
21, (g H7'(W) & TxSince (g /)" (W)= 7" (g (W)
T HeT (WY e Ty Since Ty is the fuzzy quotient
topology on Y induced by f, £ (W) e T ,. Since
7, 1s the fuzzy guotient topology on Z induced by g,
We 5, So 7C 3, and thus 3 = 7, Hence g- f
is a fuzzy quotient mapping.

Theorem 2.5. Let (X, Tx) be a fts, let Y a set, let
f: X—Y surjective, let Ty the fuzzy quotient topology
on Y induced by f and let (Z T, a fts. Then a
mapping g:Y—Z is F-continuous if and only if
g- 1 X—Z is F-continuous,

(Proof)(=): Suppose g is F-continuous. Since 7y is
the fuzzy quotiount topology on Y induced by f, f is
F-continuous. Hence g - 7 is F-continuous.

(&) Suppose g - f is F-continuous. Let We 3 ;. Then
(g-N7'(We Tx and (g-H'(W)=7"(g " (W).
Since Ty is a fuzzy quotient topology, g "(W)e 7.

Hence g is F-continuous.

Theorem 26. Let (X, Ty) and (Y, T ) be fts's and
let p: X-—Y F-continuous and surjective. Then p Is a
fuzzy quotient mapping if and only if for each fts ( Z,
3 ) and each mapping g: Y—Z, the F-continuity of
g ° p implies that of g.

(Proof)(=>): Suppose p is a fuzzy quotient mapping. Let
(Z, 7, be a fts, let g Y—Z a mapping and let
g° pr X—Z7 F-continuous. Then, by Theorem 25, g is
F-continuous,

(¢=): Suppose the necessary condition holds. Let 7 be
the fuzzy quotient topology on Y induced by p. Let p’
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denote p considered as a mapping from (X, 7 %) into
(Y,3) and let (Y, 74, —(Y, 3) the
mapping. Then clearly id-p=p is F-continuous.
Thus, by Theorem 25, id is F-continuous. On the
other hand, id™'-p =p is F-continuous and p is a

identity

fuzzy quotient mapping. Thus ™' is F-continuous. So
id is a fuzzy homeomorphism. Hence p is a fuzzy
quotient mapping.

Theorem 2.7. Let (X, Ty), (Y, 7 y) and (Z, T ) be
fts's, let p: X—Y a fuzzy quotient mapping and let
h: X—Z F-continuous. Suppose /k-p~!
valued ; ie., for each ye Y, & is constant on p '(y).
Then :

1s single-

@Ch-p)ep="rhand h-p ' is F-continuous.
() hep ' is an F-openl F-closed) mapping if and
only if 2(U) is F-open( F-closed) in Z whenever

U is  F-open{ F-closed) in X  satisfying
U=p "(p(U)).
(Proof) (a) X Y
hep™!

-2,
»
Z

Let xeX. Then x=p "(p(x)). Since 4 is constant
on p ' (p(x)), Alx)=h(p " (p(x). But k(p~" (p(x)
=[(hop e p)(x). S0 h=(h-p"")-p Since his F

1

—-continuous, the F-continuity of #&-p  {follows from

Theorem 2.6.

(bh) We will prove the F-open part. The proof of F
-closed part is similar to that of F-open part.

(=) Suppose k- p ' is F-open and let U be an F
~open set in X such that U= » '(p(U)). Since p is
a fuzzy quotient mapping and p '(»(U)) is F-open in
X, p(U) is F-open in Y. Since h-p ' is F-open,
(hep ' Np(U)) is Fopenin Z But (hep™ " (p(U))
=h(p~" (PU))) = R(U). Hence k(U) is F-open in Z.

(&): Suppose the necessary condition holds. Let V be
an F-open set in Y. Since p is a fuzzy quotient
mapping, » (V) is F-open in X. Let U= p~ (V).
Then V=p(U). So U=» YV)=p""(p(U)). Thus,
by the hypothesis, 2(U) is F-open in Z. On the other
hand, (hep Y V)=h(p " (UM =h(U). Thus
(o p H(V)is F-openin Z. Hence #-p ' is F-open.

Theorem 28. let (X, 3%), (Y, Ty) and (Z, T, be
fts, let p:X—Y a fuzzy quotient mapping and let
g: Y—Z a surjection. Then g- p is a fuzzy quotient
mapping if and only if g is a fuzzy quotient mapping.



(Proof) X b, Y
)
i \ﬂ y £
Z

By Theorem 2.6, g+« p is F-continuous if and only if
g is F-continuous. Therefore, for each We T
(g-p) ' (W) is F-open in X if and only if g '(W)
is F-open in Y.

Let £X—Y be a mapping. Define a relation ~, and
X by x~,y if and only if f(x)=f(y). Then ~/ is
an equivalence relation on X . In this case, ~, is called
the equivalence relation on X induced by f.

Lemma 29. Let f: X— Y be a F-continuous mapping,

let ~, the equivalence relation on X induced by f
and let 7 X— X/~ ; the natural mapping. Let {(X/~ ,,
7 y-,) be a fuzzy quotient space of X. Then fox!
is F-continuous and injective.

Furthermore, if f is surjective, then foz '

is bijective.

(Proof) x Ly

’
b \ for !

VA
Clearly = X—X/ ., is a fuzzy quotient mapping. Let
Then f '(y)=0 or f'M#o. I
£ '(y) = @, then clearly x is constant on f '(y).
Suppose f '(y)# @ and let x,xef '(y). Then
flx)) = y= flx). Thus x . x. So [x]= [x:] and

thus 7(x,) = n(x,). Hence z is constant on f '(¥).

yeY.

ie, f-a ' is single-valued. Therefore, by Theorem
27(a), f-x ' is F-continuous.
Now suppose [x,], [x]e X/, and (f -z ") (IxD
= (f- 2 YIxw). Then f(z ' ([x]) =Ax "(LzD).
Let yye o '"(Ix,]) and y,& 7 "({x:D. Then f(y) =
f(y). Thus y; . v, So [x]=aly) = nly) = [x.].

Hence f- ' is injective.

Finally suppose f is surjective and let ye Y. Then
there exists xe= X such that f(x)=y. Thus [x] =
X/~ ,and (f- 2z Y(IxD=y So fox !

Hence f- n ' is bijective.

is surjective.

Theorem 2.10. Let ( X, T7y) and (Y, Ty) be fts's and
let f: X— Y be F-continuous and surjective. Then
for % X/~ ;Y is an F-homeomorphism if and only
if f is a fuzzy quotient mapping.

x| Sl 7stof

(Proof)(<): Suppose f is a fuzzy quotient mapping.
Then, by the lemma 29, -2 ' is F-continuous and
bijective. It is sufficient to show that f-x ' is F
-open. Let U be an F-open set in X such that U
=z (). Then =z "(2(U)=f "(AU)). Thus
FHAU)) is F-open in X. Since f is a fuzzy
quotient mapping, f(U) is F-open in Y. So, by
Theorem 2.7 (b), fox 'is F-open. Hence forx !
F-homeomorphism.

IS an

(=): Suppose /- 7z ' is an F-homeomorphism. Then

for ' is fuzzy quotient mapping. By Theorem 2.8,
(fexr HDex is a mapping. DBut
(f-7 Y x=f Hence fis a fuzzy quotient mapping.

fuzzy quotient

3. Fuzzy quotient spaces defined by the
second way

We turn our attention toward the second way of
defining a fuzzy quotient space.

Definition 3.1. Let (X, 7y) be a fts and let D a
partition of X . Define a mapping p: X—D as follows :
For each xe X, p(x)eD contains x. Let TD be the
fuzzy quotient topology on D induced by p. Then (D, 3
D) is called a fuzzy quotient space of X . The mapping
p is called the natural mapping of X onto D. The set
D is also called a decomposition of X and the fuzzy
quotiemt space (D, 7D) is caled a fuzzy
decomposition space or a fuzzy identification space of X.

also

Example 3.2. Let X = {a, b, ¢}, let D= {{a, b}, {c}},
and let Ty= {2, X, 0, Oy, 0,N0,, 0,U0,}, where
0,= {(a,0.3), (b, 0.3), (¢, 0.8)} and
0,={(a,0.6), (5,0.6), (¢, 0.7)}. Let the natural mapping
p: X—D be defined by :
pla)=p(b)={a, b} and p(c) = {c}.
Then the fuzzy quotient topology 7D
by p is as follows :
ID={o, X,0),0;, 0/N0;, 01U03)},
O = {({a, b},0.3), ({c}, 0.8)}
0.6), ({c}, 0.D}.

on D induced

where

and 0= {({a, b},

Lemma 3.3. let X be a set, let D a partition of X and
let p: X — D the natural mapping. Then for each & [

D, p (&) = Ue.

(Proof) Let x;= J&. Then
i< (U= supt(D)=

xeDes

supé(p(x))

replx)el

Thus A< &(p{x)=p"(&)(x). So x=p (&) and
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thus J&cp (&), Now let =x,=p '(&). Then
A<p HE ()= £(p(x)). Since p is the natural mapping,
xe p(x)eD.

Thus A< supxeplx)eD &(p(x)) = (U&) (x).

So xelJé and thusp N&OC U& Hence » (&

=Ue.

Proposition 34. Let (X, T7x) be a fts, let D a
decomposition of X, let p: X— D the natural mapping, let
3D the fuzzy quotient topology on D and let &< ID.
Then £e TD if and only if Uée 7.

(Proof) It is clear from Lemma 3.3.

Theorem 35. let (X, 7x) be a fts, let Y a set, let
f:X—Y a surjection, and let Ty the fuzzy goutient
topology on Y induced by f. Let D = {f () y=Y}.
Then there exists a F-homeomorhism g: Y—D such
that g- f = p.

(Proof) Clearly D is a partition of X . Define g: Y—D
by g(y) = f'(y) for each y= Y. Then clealy g is
bijective. Let x=X. Then g(f(x)) = f '(f(x)). Thus
reg(f(x)eD. So g(f(x)) = p(x). Hence g- f= p.

Let £&= TID. Since p is F-continuous and g-° f= p,
(g-H7'& = (g (€)e Tx Since Ty is the
fuzzy quotient topology on Y induced by f, g '(&)e
Jy. So g is F-continuous.

Now let Ue 7. Then, by definition 2.1, 7 "(U)e
9y On the other hand, g(U)=7 "(U). Thus
g(U)e Tx. So g is F-open. Therefore g is a F
~homeomorhism.

Theorem 3.5 yields the following commutative diagram,
where g is a F-homeomorphism :

X —  f > Y
\ ip
D

The following theorem provides a criterion for

determining when a mapping whose domain is a fuzzy
quotient space is F-continuous.

Theorem 3.6. Let (X, Ty be a fts, let (D,TID) a
fuzzy decomposition space of X and let p: X—D the
mapping. Let (Y, Jy) be a fts and let

Ff: X—Y a F-continuous mapping such that for each
DeD, f(x) = f(y) for all x,ye D. Then there exists
a F-continuous mapping g:D —Y such that g-p = f.

natural
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b4

D g Y

(Proof) Define g: D—Y by g(D) = f(D) for each
DeD. Let xeX. Then g(p(x)) = Ax), since
xep(x)eD. So g-p=f. let VeTy Then

WM =(g-p) (V)=p"eg (V) €T . Since p

is the fuzzy quotient mapping, g '(V)e TD. Hence g
is F-continuous such that g- p = f.

Theorem 3.7. let (X, Ty and (Y, Ty) be fts's, let
fi X— Y F-continuous surjective, let D= {f '(y):
ye Y}, and let 3D the fuzzy quotient topology on D
induced by the natural mapping p: X—D. Then the
induced F-continuous mapping(given in Theorem 3.6)
g:D—Y is a F-homeomorphism if and only if f is a
fuzzy quotient mapping.

(Proof)(=): Suppose g is a F-homeomorphism. Then
clearly g and p are fuzzy quotient mappings. Thus, by
Theorem 24, g-p is a fuzzy quotient mapping. But
g- p=f. Hence f is a fuzzy quotient mapping.

(&) Suppose f is a fuzzy qoutient mapping. By
Theorem 36, g is F-continuous. Observe that g is
Ve 9D Then p "(V)e T4 and
F Ye (V) =p (V). Thus f '(g(V))e Tx Since
f is a fuzzy quotient mapping, g(V)e Ty So g is

bijective. let

F-open. Hence g is a F-homeomorphism.

The following theorem gives a criterion for a fuzzy
quotient space to be a fuzzy Hausdorff space in the
sense of Pu and Liu.

Theorem 38. let (X, 7x) and (Y, 3 y)be fts, let

f: X—Y F-continuous surjective, let D= {f (y):
ye Y}, and let D the fuzzy quotient topology on D
induced by the natural mapping p: X—D. If Y is FT;
in the sense of Pu and Liu, then so is D.

(Proof) By Theorem 3.6, there exists a F-continuous
mapping g:D—Y. Moreover g 1is bijective. Let D,

and E, be distincte fuzzy points in D. Then g(D;) and
g(E,) are distinct fuzzy points in Y. Since Y is
FT,, U, VeT3, such that g(D;)qU,
g(E, gV and UNV = @. Since g is F-continuous,
g (), g " (V)e 3D. Moreover g "(I)Ng (V)
=0, Dygg '(U) and E,q g (V). Hence D is FTy.

there exist

Remark 3.9. Definition 1.9 is the third way of defining a
fuzzy quotient space.
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