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Asymptotic Relative Efficiencies of Chaudhuri’s Estimators
for the Multivariate One Sample Location Problem

Kyungmee Choil)

Abstract

We derive the asymptotic relative efficiencies in two special cases of Chaudhuri’s
estimators for the multivariate one sample problem. And we compare those two when
observations are independent and identically distributed from a family of spherically
symmetric distributions including normal distributions.
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1. Introduction

In one sample multivariate location problem, the conventional parametric test statistic is
Hotelling's T° which assumes that observations are independent and identically distributed
(1id.) from multivariate normal distributions. However the normality assumption is often
violated. So, to avoid distributional assumptions, Raleigh (Watson, 1983), Randles(1989) and
Chaudhuri(1992, 1993) adopted direction vectors. Under the simple symmetry assumptions
adopting direction vectors makes the test statistics free of distributions.

In this paper, we review some important asymptotic properties of those location estimators.
Under the more general spherically symmetric distributions with heavy or light tails, we
obtain Chaudhuri estimator’s asymptotic relative efficiencies (ARE) with respect to Hotelling’s
T for two cases : (i) when the direction vector of each observation is used (this
corresponds to L=1) and (ii) when the direction vector of average of two observations is

used (this corresponds to L =2).

Chaudhuri (1992) discussed the AREs of his estimators in terms of the inverse of the
variances. Even though the inverse of variances gives a correct view of AREs’ tendency, they
are different from the exact AREs by a constant. Also the variances were obtained only under
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the normality assumption. Thus it would be meaningfil to derive exact AREs and calculate
them under more general distributional assumptions.

Finally we compare two estimators in terms of efficiencies and evaluate which Chaudhuri’s
estimator works better. AREs are obtained based on the previous results by Randles(1989) and
Choi and Marden (1997). In both of the works, directior. vectors were used.

2. Chaudhuri’s location estimators for the multivariate one sample

Let X, X,, -+, X, be iid. multivariate observatiors in R’ for p>0 and || -|| be the
notation for the Euclidean norm. Let & be its location parameter. Without loss of generality,
we test the hypothesis H,:0=0(0 against H, :0+(0. For L<n, let Anu‘) be the set of
subsets of {1,2,--,n} with size L, that is,

AP = (des{1,2,, %} and size(a)=L). 2.1)

Define X,=(1/L) 2. X, To estimate the location parameter of the sample, Chaudhuri (1992,

1993) uses the average direction vectors U, as follows:!

1 X, ,
oA AD) oZo XA 22)

Using U-statistic theory he found the asymptotic distribution of U;. Let us define some

UL=

useful expectations beforehand. They are as follows:

S x/L RXTL
D= —1—— — =1 1=1 .
Dr=tn L (2.3)
IZ x| S XA XL
and
DP=E, X+ X+ + X, (X +XG++XD)] o

where X, Xy, X3,+, X, X are iid. multivariate cbservations. If a sample is from a

spherically  symmetric  distribution,  then ldl is  independent  of ]2;;”— and

T
E{ﬁ ﬁ] = %It,. Thus D\P = EHO[I/H ZIX,/LII](I —-%)Ip. Based on these, Chaudhuri

introduced the multivariate version of L™ order Hodges-Lehmann type (1963) location

estimators as follows:

am_ 1 -1 X, i
671 C(n,L) [Dl ] aeg,f") || Xa” ) (2,\))
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where C(n,L) Then Vo H/nm—*N(O,E v,) in distribution, where the

_ n!

T (n—L)'L!-
variance-covariance matrix is
3y, =L D] D DET L (2.6)

Chaudhuri (1992) obtained a closed form of Dl(L) under the  spherical normality. He
mentioned that for the general L=2 and the high dimension, DZ(L) can be obtained from
(p~1)-fold Lebesque integrals of the spherically symmetric density function Ax) by fixing one
component as 0. DZ(L) was expressed as an integral form especially when the distribution is
bivariate normal with a diagonal variance-covariance matrix. Hence assuming the spherical
normality, the asymptotic variance-covariance @(p, L) of Vo 67;5) on R? for p=2 was
obtained in a closed form. And it was shown that A(p, L)>*(p+1,L) and
A(p,L)>?(p, L+1) for fixed L and p respectively. This implies that under the spherically

symmetric normal distribution for a fixed L its efficiency increases as the dimension p

increases, and for a fixed p it increases as L increases. This implies that under the
normality assumption his statistics work better in the higher dimension than in the lower

dimension, and the statistic of (L -+ 1) is better than that of L when the dimension is fixed.

Here two location estimators of our interest are gfn and W Let us write them down
explicitly.
Case : L=1
v=L3 X
- n = X (2.7)
D(l)_E 1 I — Xl _X_lT (2.8)
Lo 2EDNX e X X '
and
X, X!
D (D E _ 1 1 .
e = Bl e X 29

where X, is a multivariate random variable from any distribution. The 1st order location

estimator is
X

m . (2.10)

2 _ 1lrnMy-1
60 =L1p"

Then V » ?nmﬁN(O,ZU,) in distribution, where Xy ={D"Y1 DY [ DM L
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Case : L=2
V2= Ztn—D Z‘: X +X" (2.11)
o EH"[ 10, + X)/2 (]” X, + X0 11X, + Xl (2.12)
and
T
DP=Ey X, +X, (Xi+X3 .

1X,+ 20l 11X, + Xl
where X, X5, X; are iid. from a multivariate distribuzion. The 2nd order location estimator
is

X, +X
-—1 1 2
Z i (2.14)

9
6,7 = a1y L] X, T X,

Then V 7 8,7—N0,% y,) in distribution, where ZU2=22[ D] “1pPIDP17L
3. ARE of .Y with respect to Hotelling’'s T°

In this section we show that @T) is equivalent to the Raleigh’'s statistic (Watson, 1983),
whose efficiency was deeply studied by Randles (1989). Let us look at Raleigh’'s R, first.

Raleigh’s statistic R, (Watson, 1983)

X; ) )
Let U,~=m for i=1,2,--,n. Then Uy, -, U, are iid. from Uniform(£,), where £,

is the surface of the unit ball in R?. And the Raleigh’s test statistic for the location

parameter is defined by

R=np U U. (3.1)
Note that Rn—>xf, as 7 goes the infinity. And the first Chaudhuri’s statistic # 6/’1@ 2 (_,‘1 @(T)
is equivalent to the Raleigh’s R, when the distribution is spherically symmetric as follows:

ne/,,m’zz,}ﬂ

n

— 1
_”n =1 Ile

Z"(%Z )% n, lufchn)
1
n

o)l &)

| [Dl(”] ~1p®[ po] - lD(l)\/';ll (D] ﬁ__))%_
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[ -

=np U U (3.2)
So we can use the ARE of R, for = WTZ Z;ll 0/,,m )

To look at this ARE more specifically, let us consider a family of elliptically symmetric
distributions with density function

Ax— 0=k, |3 Vexp(—[x72 %/c,]"), xR, (3.3)
where
b y)
Cp= P\ 2y ky,= VI(Z) (34)
’ _.bifz_)’ b _L)[n,c]ﬂ/Z’ o
2v 2v b

2 denotes a scales matrix and v>(. For 0<v<1, the distribution is light-tailed, for v=1 the
distribution is normal, and for v>1 the distribution is heavy-tailed. When X= I, this family

becomes spherically symmetric one.

When observations are i.id. from Ax) defined above, based on results by Randles (1989)
the asymptotic relative efficiencies of 6’/,,m with respect to Hotelling’s T? is obtained such

as:

The ARE of W with respect to Hotelling's T° (Randles, 1989)
4)/21—2( vt p—1 )[( p+2 )

2 2v 2v
AREC( 6,7, = 35
( T°) o ( J)_> (3.5)
2V
These AREs are less than 1 if the distribution is light-tailed or normal ( y>1), and they are

greater than 1 if the distribution is heavy-tailed ( v<1). This means that H/nm works better

than Hotelling’s T2 when the distribution is light-tailed or normal ( v=1), and Hotelling’'s 7%

works better than 5}1‘) when the distribution is heavy-tailed.

4. ARE of 0? with respect to Hotelling’s 7°

The following proposition provides the ARE of 55’27 with respect to Hotelling's TC.

Proposition 1. The asymptotic relative efficiency of n 6'/,,(W 2 (_121 5,,(2) with respect to

Hotelling's 7% is
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DTy -1 7 — 1 1=2\* -1 :
ARE( 897351 82, T9 E’ el ]( > )c , (4.1)

where Dy? = cl, for a positive c.

Proof. Let us first find the noncentrality parameter 4 of n g;(W 2 (721 0/,,(2) under the

spherical symmetry. Let 7=20, Z=X,+X, and H(Z,7) Z4oV ol Also for the

notational simplicity let us use D; and D, in place of DI(Z) and DZ(Z). From the direct

calculation we obtain the following equation such as

0H _ 1 1 _ ZHalNan (Z+aVw© .
37 ‘VTZHZ+WJZHP? 12+ 9/l nz+w¢2u)' 42

OH _ dH 91y _ o dH X1+ Xy
Then aa = 877 80 ‘—2 877 . Then \/_nEHA ”X1+X2||

X, + X, +26/V n
VB 5 X, 1 20 Al

~V [ -2E 1 o=

=2@E[—%—f]f| Fo]e

] are obtained as follows.

o 1 I Xi+X, (X+Xx)7 9
X+ X\ X+ X6l 11X+ Xl

_ 1 ( p—1 )

28 ez 5 )° 43
The first approximation holds by Taylor expansion and the last equality holds because
(X;+ X)X, + X/l and ![X1+X2|| are independent under the spherical symmetry.

. D=1 7D i
Therefore the noncentrality parameter of # 0,” 2y, 6, is given by

A2 1 1= 5\ pTr 102 -1 -7 -1p -1

_ 2 1 1—p\? 7 -1
Bz (5 0'pe

2 1 1—p\% —1,7
‘Ehx+&ﬂ(p Jele%e, (44)

where Chaudhuri (1992) showed that D, = cl, for a positive ¢ under the spherical symmetry.

Then its asymptotic relative efficiency follows immediately. []
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When X, X,, X3 are Lid. from a spherically symmetric distribution  E[1/]|.X; 4+ X)l]

X +X, (Xj+Xx97
12X+ Xl 11X+ Xl

are 2p-fold and 3p-fold integrals respectively. However Choi and Marden (1997) calculated

and K ]= cl, for ¢>0 are two quantities of our interest and they

similar expectations of multivariate random variables with FEuclidean distances, which are

X -X;, (X-X)"
11 =21 11X, = X

values of those expectations when X, X, X3 are iid. from a spherically symmetric

E[1/IX,—X)|I] and E =dl, for d>0. They obtained numeric

distribution with the density defined in Section 3 for the cases of p=1,2,3,5 and
v=5,2,1,1/2,1/5,1/10. Under the spherical symmetry it is obvious that E[1/]|X;+ X,ll]
=E[1/lIX,— X,)|]] and c¢=d . Therefore the numeric results by Choi and Marden (1997)

can be used for Chaudhuri’s location estimators.

These AREs are less than 1 if the distribution is light-tailed or normal ( v=1), and they

are greater than 1 if the distribution is heavy-tailed ( v<1). This means that dffz) works

better than Hotelling’s 7% when the distribution is light-tailed or normal (v=1), and

Hotelling’s T? works better than W when the distribution is heavy-tailed.

5. ARE of 47 with respect to 9,

Once the two AREs are obtained we can compare a seires of Chaudhuri’s statistics in
terms of AREs, as Chaudhuri did with the variances under the normal distributions. For this,
5(27 gm

we use the asymptotic relative efficiency of with respect to . . This ARE is a

simple ratio of two asymptotic relative efficiencies, which is as follows:

ARE( 8.2 7%
ARE( 8,2, 5 ) = s =l “(4.5)
( )= "ARE( 0,0, T%

When a sample is iid. from the spherically symmetric distribution with the density function
defined in Section 3, its numeric values are presented in the following Table 1.
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Table 1. The Asymptotic Relative Efficiencies of 5}"” with respect to 5,}”
v
p
5 2 1 1/2 1/5 1/10

1 2.614 2.123 1.499 0.750 0.0938 0.00293
2 1.675 1.497 1.232 0.864 0.348 0.105
3 - 1.409 1.306 1.147 0911 0.513 0.233
5 1.221 1.169 1.032 0.946 0.659 0.413

Let us first look at the normal distribution case. As mentioned earlier Chaudhuri (1992)

proved ¢(p, L)> @?(p, L+1) which means that ?\,,(LH) is better than ?;(L) under the

spherically symmetric normal distributions. This result for L =1 is consistent with the values
when v=1 in our tablee. When v=1, ARE( 6/,1(2), 6/,,m) is always greater than 1. When
the distribution is light-tailed ( v>1), all AREs are also greater than 1. This also means that

(9/,,(2) works better than 5,,“7 On the other hand when the distribution is heavy-tailed ( v<1

), all AREs are less than 1. This means that W works better than @Z’Z) For all cases all

AREs tend to 1 as dimension increases. Therefore in term of the ARE we conjecture that for

the light tailed and normal distribution, 9/,7) (L=mn ) is the best and for the heavy tailed,

ﬁ/nm (L=1) is the best.

6. Conclusion

Direction vectors have been used to make the test statistics distribution—free in the
multivariate samples. Even though statistics with Euclidean norms are easy to calculate and
understand, obtaining their efficiencies are very difficult because expectations of Euclidean
norms often involve integrations in high dimensions. Based on Euclidean distances, Chaudhuri
extended univariate Hodges-Lehmann location estimators to the multivariate ones. In this
paper we obtained exact AREs of two simplest Chaudhuri’s test statistics and compared them
in terms of their asymptotic efficiencies. To obtain numeric values of AREs we used results
by Randles(1989) and Choi and Marden(1997). When the distribution is heavy-tailed, the
average direction vector of each observation is better than the average direction vector of sum
of two observations. When the distribution is light-tailed or normal, it is the other way
around.
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It would be also good to have some simulation results for the comparison. For this we can
refer to the simulation results by Randles (1989) and by Choi and Marden (1997). Even
though Randles’ test statistic is not exactly the same as Raleigh’s one, they are
asymptotically equivalent. Randles uses the interdirections to estimate the angles between two
unit vectors and he shows that these interdirections provide the consistent estimators of inner
products of the unit vectors. So the simulation results for Raleigh’s would not be different
from those for Randles’. Also we can give the similar reasons for Chaudhuri’s second location
estimators. Even though the statistic of Choi and Marden (1997) is for the two-sample

problem, its empirical behavior with respect to the two-sample Hotelling’s T? would not be
very much different from that of Chaudhurt’s second one with respect to the one-sample

Hotelling’s T®. This is because both test statistics use the simple average of direction
vectors of two observations and have the same efficiencies. Thus the simulation results of the
second Chaudhuri’s statistic would not be really different from that of Choi and Marden’s one.

Also it is another task to have a proper consistent variance-covariance estimators of
Chaudhuri’s location estimators.
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