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A Functional Central Limit Theorem for the Multivariate
Linear Process Generated by Negatively Associated
Random Vectors

Tae-Sung Kim!) and Hye-Young Seo?)
Abstract

A functional central limit theorem is obtained for a stationary multivariate linear

process of the form X, = ZOAuZ — where {Z,} is a sequence of strictly stationary
=

m-dimensional negatively associated random vectors with EZ,= O and E||Z,||?< o

and {A,} is a sequence of coefficient matrices with ZOHA““ (oo and
=

ZZOAM# 0 mXm -

Keywords : Functional central limit theorem, m-dimensional linear process, negatively
associated random vector, maximal inequality.

1. Introduction and main result

A finite family {Y7, :-, Y,} of random variables is called associated if
Cov(f(Yy, -, Y,),g(Yy,,Y,))=0
for all real coordinatewise nondecreasing functions, f, g on R” such that this covariance
exists. It is called negatively associated if for any disjoint subset A of {1, -+, n} and any

. . . . A AC
real coordinatewise nondecreasing functions f on R'! and g on R4

COV(f(Xi, ZEA),g(X,,]EAC)) <0,
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where | A| is the cardinality of a set A and A€ is the complement of A.

An infinite family of random variables is associated (negatively associated) if every finite
subfamily is associated (negatively associated). These concepts of dependence were introduced
by Esary et al.(1967) and Joag-Dev and Proschan(1982). Basic properties of associated and
negatively associated random variables may be found in Esary et al.(1967), Joag-Dev and
Proschan(1983), and Newman(1984).

Let {X,, t=0, £1, -} be an m-dimensional linear process of the form
Xi= 2 AZi V)

defined on a probability space (2, F, P), where {Z,> is a sequence of stationary m
-dimensional negatively associated random vectors with £Z, = O, E||Z,||? { o and positive

definite covariance matrix I": m X m. Throughout we shall assume that

uZ:O“Au“ < co and uZOAu 74: O mX mos (2)

where for any m X m, m>1, matrix A= (a;;), |All= fl ﬁlla,-jl and 0 ,,x» denotes
i=17j=

the m X m zero matrix. Further, let
r-(£a)r( £a).
7=0 7=0
where the prime denotes transpose, and the matrix I" = (0,;) with

o =E(Z Zy;)+ EZ(E( ZwZy) T ECZy;Zy). @)

let S,= tZlXt’ (n=0)(S,= 0), and define, for » > 1, the stochastic process &, by

1 _1
Eu)=n T *[S,+ (nu—nX,1], r<nulr+1, (4)
where »r=40,1,-, n—1.

Fakhre-Zakeri and Lee(1993) derived a functional certral limit theorem for m-dimensional
linear process X, of the form (1), where {Z,} is an m-dimensional ii.d. sequence of random
vectors and Fakhre-Zakeri and Lee(2000) also obtained a functional central limit theorem for

an m-dimensional martingale difference sequence E(Z,F;_,) = O as. where F, is the

sub o-algebra generated by Z,, u < t.

In this paper we define negatively associated random vectors and consider a functional
central limit theorem for them and we also prove a functional central limit theorem for an wm
—-dimensional linear process generated by wm—dimensional negatively associated random vectors.

We close this section by introducing a basic definition and a main result.
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Definition 1.1. The m-dimensional random vectors {Z,, -, Z,} are said to be negatively
associated if for every nonempty subset of A of {1,---,#n} and for every coordinatewise
nondecreasing functions £, g such that Ef2(Z,, te A){ o, Eg(Z, seA){ o,

Cov(f(Z,, teA), g(Z,, s A°))<0.

Infinitely many random vectors are negatively associated, if any finite subset of them is a
set of negatively associated random vectors.

Theorem 1.2. Let {Z,, t=1,2, -} be a stationary negatively associated sequence of m

~dimensional random vectors with E(Z,) = O, E||Z,||?C o0 and positive definite covariance

matrix I" as in (3) and let &, be as in (4). Assume that

BIZP+2 25 5 I E(Z L2 )] = o* <o, )
2 |E(Z,Z )| = 0(n™") for some 00, (6)

and
E\NZ,|° < o for some s> 2. (7)

Then, as # — o0,
m
En :> W ’
where = indicates weak convergence and W™ denotes an m-dimensional Wiener process on

C™[0, 1], the space of all continuous functions f defined on [0, 1] into R™ equipped with

the norm || fllew = max j<;<msup <<l (L
2. Proofs

It is not hard to carry out that the moment bounds for associated sequences, given in
Birkel(1988), still hold for negatively associated sequences. In particular we have :

Lemma 2.1. Let {Y;, i=1,2,:+} be a stationary negatively associated sequence with
EY,= 0. Assume

> IE(Y;, Y)l=0(n"*) for some p>0, (8)

+1

and
E|lY,)°¢co for some s> 2. 9

Then there exist 7> 2 and B not depending on # such that for all #=>1

=

E|S,|”<Bn?, (10)
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where S, =Y, +--+Y,.

Remark 1. Note that from Lemma 2.1 and Theorem 3.7.5 in Stout(1974) for » > 2

E(max (<4<, Se) 7= 0(n %) (11)

follows under assumptions in Lemma 2.1.

Lemma 2.2. Let{Y;, i=1,2,:+} be a stationary sequence of negatively associated
random variables with EY;=0, EY,;2< . Assume -hat (8) and (9) hold.
Let W,(u)=(sVn) 1S, 0<u<l, and w(W,, d) = supg<u<ssup| W,(u)| where
s2=EY, %+ 22I Cov(Yy, Y)|<o. Then
Ii’rln supP{w(W,,8)>e}—0 as &{0. (12)

Proof. Let € > 0 be given. Then
[ 1
P{w(W,, 8)>e}< Zi P{max g¢r<(nel Sel > ne/3}. (13)
According to Lemma 2.1 we have for #) 2

EIS,|"= 0(n?). (14)
Hence, Theorem 3.7.5 of Stout (1974) yields

E(max <3< Sil) " = O(:ng). (15)
Using Markov’s inequality, (12) and (14), we obtain
P{w(W,, 8> e}

-r -Z [ ]
S(&) n * iiE(maXous[na]‘SkDr

& 1=
sc(e)n_fr[zzl[na]%
Sc(e)n_%([l/6]+1)(1zé‘+1)7r

=c(e)(6+1/n)—2z([1/8]+1).

Hence,

limsup, P{w(W,, 8) > e} < c(&)d2 ([1/8]1+1) — 0, as 8 | 0.
This proves (12) and completes the proof.
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Remark 2. Note that { W,( - )} satisfies the tightness by Lemma 2.2 and Theorem 155 of
Billingsley(1968).

Lemma 2.3. Let{Z,, t=1,2, -} be a strictly stationary negatively associated sequence
of m-dimensional random vectors with E(Z,) = O and E|Z 1% ¢ 0. Define, for us [0, 1],

n=1,

L _1
n.(u)=n °T 2( ;Zt+(nu-r)Z,+1), r<nulr+1, (16)
r
where » = 0,1, -, »— 1, and the covariance matrix I'= ( ¢;;) with

ij:E(ZlkZI/) + IZ:Z[E(Zlthj) +E(Z1thk)]. If (5), (6) and (7) hold thel’l, as n—>0o0,

e = W™.

Proof. To prove tightness of the sequence {7,( ), #=1} note that each of the
coordinates {7,;; =1, -+, m} satisfies (11). Tightness of the coordinate sequences and
thereby tightness of #, itself follows by standard arguments from Lemma 2.2 and Theorem
155 of Billingsley(1968). Hence, it remains to show that the only possible limit points is
Brownian motion in K™ with covariance structure I' = (¢,;). The proof is similar to that
of Theorem 2 of Burton et al.(1986). For the sake of completeness we repeat it. Let Y( -)
be a limit point (7,( - )). We have to prove

(i) Y(u+ k) — Y(u) has normal distribution with covariance % - I';

(ii) Y has independent increments.

Let a= R™ be a non-negative vectors. Then<{ a, (Y(¢t+ k) — Y(#))> has a normal
distribution with variance a@I'a by the Newman result for negatively associated process(see
Newman(1984)). Now we can apply Lemma of Burton(1986) which yields (). Let
0<2;Cuy< - <{u,<1 be given.

(2, Co)y 0y Q) — 7 Cur), o, 0, () = 0, (ugmy)), (n )C N,

converges in distribution to
(Y(u), Y(u) — Y(uy), o, Y(up) = Y(wup1)).
Let a;, -, a, <€ R”™ be non-negative vectors. Then
(Cay,n, (u)>, <ag, (9, () =0, (1)) >, <aw, (0, (o) =7, (up=1))>)
converges in distribution to
(Cay, Y(up) >, o, <ap, (Y(up) — Y(upo))>).

The coordinates of the last vectors are hence negatively associated and by a simple
computation involving (6) also uncorrelated, which together imply independence. Now we can
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again apply Lemma of Burton(1986) to obtain the independence of the increments of the Y

process. Thus the proof of Lemma 2.3 is complete
} be a strictly stationary negatively associated sequence of

Lemma 24. let{Z,, t=1, 2,
m-dimensional random vectors with E(Z,) = O and E|lZ||?< . Let X ,= (]Z ANZ, ,

gk = é )N(, and assume that (2), (5), (6) and (7) hold

Then
_1 - ,
n ZmaXISkSn” Sir— Sl = 0,(1). an
Proof. see Appendix.
Finally, we prove the main result by using Lemmas 2.3 and 2.4
Proof of Theorem 1.2. Let Xt= ( ZOA,»)Z, . Then we have
F=
E(X,)=0 and El X JI*< o,
EIX % +2 2 2 |E(X X o)
( ANAENZNE+2 2 BNEC 2y, 211 < o,
> 1 X 1)
=n+1
( Z A ||> =Zn+1'E( Z1i Z)l=0(xn"°) for some o> 0,
EIX I° < ( ZOHAH) ElZ ,JI°< oo for some s> 2
by assumptions (2),(5), (6) and (7), respectively.
Thus {X,} satisfies the conditions (5), (6) and (7). Further let &, be the same as &,
defined in (4) with g, and X »+1 in place of S, anc X ,,,, respectively, that is,
1

1 _
) 2T 2<§7Zt+(nu_r)zr+l), r<nu<r+1
Applying

5w = X4
where »=0,1,-,n— 1. Thus it follows from Lemma 2.3 that &, = W
Lemma 24 and Theorem 4.1 of Billingsley(1968) we obtain that &, = W™, so the proof is

complete.
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Appendix
Proof of Lemma 2.4. First observe that

.= B Sa)er B 8.0
b

;.j f)Zt

t=1

S ()

[

and thus,
gk_skz_tﬁl{zAZ’ ’} 21(/22[“14]_)2[
= I, + I, (say).
To prove
_1
n * maxi<psqllil = 0,(1), (A1)
we observe that for » > 2
n—?Emaxlngn Z‘l gtAth—j
- - r
= n_zEmaXISkSn IEI g iZ i
1

1

o] . 2 n7

<B] 2 140 (408) .
=1 n

The first inequality above is obtained by Minkowski’s inequality and the last inequality is

obtained by (11). Finally, by the dominated convergence theorem the last term above tends to

zero as n — oo, Thus (A.1) is proved by the Markov inequality. Next, we show that

-1
n Pmax cpenl bl = 0,(1). (A.2)
Write
IZ - III+112, where
III :AIZk+A2(Zk+Zk—1)+'"+Ak(Zk+“'+Zl)
and

IIZ = (Ak+1+Ak+2+ )(Zk‘l‘ A Zl)
Let p, be a sequence of positive integers such that

pp— o and p,/n— (0 as n — . (A.3)
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Note that

_1
n 2 maxlsksn" g I

0 _1l
S( Z:O ||A,||)n Pmax <y | Zy+ o+ Zyll

_1
+ ( ;p'. IA D)7 2 max i cpen | Z1+ o+ Z,

_ =+ IV (say).
Note that for > 2 and positive constants By, B,

(2 0A0) % 2 Emax icaep | 2ot =+ 2ol "< 2 1AM ) Bl m) 2,

(zZp,, "Ai")rﬂ_zEmaX1sksn” VAR +Zk" T<( 1;9" ”A," )rBz.

by (2), (11) and (A.3). Thus
HI+1V = O pa/ m) + 0,0 25 A1)

=Op(1).

It remains to prove that

-1
Yn =n : max j<r<n “ III " = Op(].).

To this end, define for each /> 1
III,I = Ble+ Bz(Zk+Zk~1)+ + Bk(Zk+ +Z1),

where
A, k<
Bk=
OmXﬂl) k> l-
1
Let Y, ,=mn 2 max | <peyp I, ;I . Clearly, for each [/>1,
Yn’]: Op(].). (A4)

On the other hand,
_L

Yn,l_ Y, <n 2 max <<y ﬁl(Ai;Bi)(Zk+"'+Zk—i+l) ”

1=

= max l(/eSn< i=ﬁ+1 FA: - Zk+"'+Zk—i+1")

< ( gl ”Ai“)maX 1<ksnmaxlu.sk|| Zk+"'+Zk—i+1||

<2( ;; IA: 1) max i<jcnll Zy+ -+ Z ;1.
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From this result and (11), for any 6> 0 and »> 2,
lim lim sup P(1Y, ,— Y,l>¢)

l— 00 500

< lim lim sup2”68~"( ;l A Y % 2 Emax 1<jsnV Zy 4+ Z; 17 (A5

[—>o00 p— 0

A

Cs7727 lim (1 A1) =0,
In view of (A4) and (AJ5), it follows from Theorem 4.2 of Billingsley (1968, p.25) that
Y, = 0,(1). This completes the proof of Lemma 2.4.
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