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Overfitting Probabilities using Dependent
F-tests in Regression!

Chan Keun Park?)

Abstract

Probabilities of overfitting for model selection criteria are derived for several
different situations. First, one candidate model with one extra variable is compared to
the current model. This is expanded to m candidate models. We show that these
comparisons are not independent and discuss overfitting probabilities. Correlation
between two F-tests is derived. Finally, probabilities are computed using the
dependent F distributions and F distributions based on order statistics of independent
Chi-squares.
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1. Introduction

The orthogonal regression model is examined, and properties of model selection criteria in
orthogonal regression are discussed. We introduce the forms of model selection criteria and
find the probabilities of overfitting. We then expand the probabilities of overfitting to the
multiple candidate model case where none of the additional variables are important to the
model. This is similar to a repeated testing problem where all null hypotheses are true.

The distribution of SSE(Sum of Square of Errors) and the distribution for the difference in
SSE between two nested models are discussed. The probability that a model selection criterion
overfits by one variable can be written as an F-test. We show that these forward(add one
variable) F-tests are not independent and derive their correlation. By assuming independence
in the F-tests, upper bounds for probabilities of overfitting can be computed. The distributions
for comparing a reduced model of k to nested full models of order k+I are not independent—
the within order case. Probabilities of overfitting are dependent across orders due to variables
entering the model on the basis of their order statistics. We begin with a discussion of the

orthogonal regression model.
We found probabilities of overfitting for some model selction criteria which are introduced
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in section 3. McQuarrie(1999) compared probabilities of overfitting for SICc and SIC using
independent F-tests. McQuarrie, Shumway and Tsai(1997) also found overfitting probabilities
for AICu and some model selection criteria using thte same idea. However, we find the
probabilities of model selction overfitting in orthogonal using dependent F-tests.

2. Orthogonal regression model

Let the true orthogonal regression model be
Y = X.B.+e., (1

where e, ~ N(0,d%I,), X. is the nXxk, design matrix with k.= rank(X.,). Y is an nx1
vector of observations, f. is a k.X1 vector of unknown parameters, and &, is an #nX]

vector of errors. The candidate orthogonal regression model is
Y = XpB+e¢, 2)

where € ~ MQ0,d°I,) and k= rank(X). Without loss of generality, we assume that the
design matrices X,=(1,xy,"",x5_) and X=(1,xq,-,x51) satisfy X.X+= nl, and
X' X=nl, , respectively, where x;=(x;,,*,%;,) . In addition, we define underfitting as
E < ko (X C X.) and overfitting as £ > 4 (X. C X).

Based on candidate model (2), the least estimator of fis B = (X’X) 'X'Y = X' YV/n,

where Y=(y;,-",¥,)’, and the resulting sum of squares of errors is
SSE= (Y- (r-D- Z-Lx, 7 3)
where X, represents the jth variable included in the model. The unbiased and maximum

likelihood estimates of o are si= SSE,/(n— k) and 6??: SSE,/n, respectively.

One consequence of orthogonality is that to compare all subsets of the available candidate
variables for orthogonal regression, one only needs to compute SSE for all one variable

models. In this case, when the jth variable X; is added to the candidate model, the variable
count increases by one and the SSE decreases by (X;- Y)¢/n. The best one variable model is
that for which (Y—T’)'(Y—T’)—(X}Y)Z/ n is the smallest (or alternatively, that which
consists of the variable with the largest (X}Y)Z/ n). Without loss of generality, in the
discussions that follow we assume that candidate variables have been sorted in this way.

The variable with the largest (X}Y)Z/ n are entered into the model first. Order k¥ = 1

refers to the intercept only model. k = 2 represents the best 1-variable model in the sense
that this model has the smallest SSE for all 1-variable models. The k = 2 model contains the

variable with largest (X;-Y)z/ #n. In general, the order k model refers to the k-1 variable
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model with the smallest SSE and containing variables with the largest (X}Y)z/ #n. Order K
represents the order of the model with all X include.

The (X;-Y)z/ n are independent (possibly non-central) 3 random variables. Reduction in
SSE has a distribution based on the order statistics of independent random variables.
However, they may have a central or non-central distribution. In the simplest case, we have

independent identically distributed order statistics. Typically, some of the X, are important

(vielding non-central x%) and we have independent but not identically distributed.

Consider the underfit model Y= XyB.;+ €+, where X, has been omitted from the model.

Underfit models tend to be too simplistic and make poor predictions. z’ is unbiased for A but

s® is biased high for ¢°. The overfit candidate model is Y= X{Bu+ X1B8s1+ X2Buo+ €

where X.=(X, ! X,;) and this model contains the extra variables in X,. The model is

needlessly complex. Both ? and s are unbiased. However, when k, the number of
parameters including the intercept, is close to the sample size n, we can get biased estimates.
The overfit model can also make poor predictions, which is unnecessarily complex. The
controlling of underfitting and overfitting is an important rule for finding the best model in
regression.

3. Review of model selection criteria

Now, we review some common efficient criteria. AIC is designed to be an asymptotically
unbiased estimator of the Kullback-Leibler information (Kullback and Leibler, 1951) of a fitted
model. Kullback-Leibler discrepancy (K-L) is a measure of closeness between two density
functions, g and f.

k-t = Efu(5)].
where g is the density function of the true model, f is the density function of the candidate

model, and E,. denotes expectation under the true model. In regression, let g denote the

density of the true model (1) and let f denote the density of the candidate model (2). Under
the normality assumption and scaling by 2/n, we have

2\ & L
K—L = 1og(——)+ e (4)
) & o
where
L, = Liixs - xBi=-L Bu, - )

One measure of the difference between the true model (1) and the candidate model (2) is

the L, distance in (5). The expected L, distance assuming X X = #l, is therefore
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o

n

ELLB) =~ k+ 2 8%,

where E, denotes expectation under the true model (1), Now let % be the model for which

E.[L,(E)] attains the minimum, and let %, be the model chosen by a model selection

criterion. Then the asymptotic efficiency of the choice is defined to be

L BLL(E)]

n—0 E*[LZ(kc)l )
Note that this definition, where the highest efficiency is 1, is the inverse of Shibata’s (1980,
1981) definition. A model selection criterion is said to be efficient if P(asymptotic efficiency
=1) = 1. AIC(Akaike, 1973) and AICc(Hurvich and Tsai, 1989) are asymptotically efficient
criteria,

Akaike(1973) showed that AIC is asymptotically unbiased for the K-L information

(Kullback and Leibler, 1951) up to a constant. AIC= nlog(gi)—FZ(k-i- 1)+ nlog(2n)+ n ; the
last two terms are not important for model selection, so we can ignore them. Simplifying and
scaling by n, we get

A1c=10g(3i)+l%*—11. 6)

The model which minimizes AIC is considered to be closest to the true model. However, AIC
tends to be overfitted in small samples (Nishii, 1984 ; Hurvich and Tsai, 1989). Hurvich and
Tsai (1989) attained the bias-corrected, in terms of selected order, version of AIC. AlCc
estimates the expectation of K-L and performs better than AIC in small samples.

AlICc is a better criterion than AIC to find the true model in small samples. However,
AlCc is asymptotically equivalent to AIC in large samples. Hurvich and Tsai modified AIC to
provide an exactly unbiased estimator for the expected K-L information, assuming that the

errors have a normal

AICc= log (&) + ﬁf—z 7

It can be shown that
AlCc= AlC+-2Let Dke+2)
n—k—2

When k increases to n-2, the second term of above equation goes to a plus infinity. AICc is
AIC plus an additional penalty term.

SIC(BIC) (Schwarz, 1978 ; Akaike, 1978) can be overfitted in small samples due to the
linear (in k) penalty function. The equation of SIC is

SIC= log () +-1oalnlk ®)
In large samples, the penalty term lo nn k is much larger than the 2(k+1) penalty term in

AIC. This large penalty function prevents overfitting in large samples.
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HQ (Hannan and Quinn, 1979) is a strongly consistent estimation procedure based on the
law of the iterated logarithm. The equation of HQ is

HQ:log(%H@gl—;g@ﬁ ©)

HQ behaves more like the efficient model selection AIC. For example, loglog(100) = 1.527,
loglog(1000) = 1.933, and loglog(10000) = 2.220. The loglog(n) term represents the ratio of the
HQ penalty function to the AIC penalty function. Indeed for n = 200000, loglog(200000) is
2502, and the penalty function of HQ is only approximately 2.5 times larger than that of
AIC.

The last criterion we consider is SICc (McQuarrie, 1999). SICc can be derived by using
the relationship between AIC and AICc. The penalty function of SICc is the penalty function

of SIC scaled by SICc is defined as

n
n—k—2 "

SICc= log () + JEWE (10)

4. Probabilities of overfitting

We are now examining probabilities of overfitting for these criteria. We denote the reduced
model k and the full model by k+1. We begin with the one candidate model case only and
compare the true model to this one candidate model. Suppose that the true model is k, and
add only one variable to the true model. We will find the probability of overfitting of this
situation (add one variable).

AIC : AIC overfits if AIC,<{AIC,.

P(AIC,1<AIC))

=P{F1‘n_k_1>(n—k—1)(exp(—‘721)——1)} 11
AICc : AlCc overfits if AICc,, CAIC.,
P{AIC., AIC:}

=P{Fu, i1 > (n=k=D{exn (=28 =) - 1))- (12)

SIC : SIC overfits if SIC,+,<{SIC,.
P{SIC,<{SIC,}

~P(Fier > (n= k1) exp(BEL) 1)), (13)

n

SICc : SICc overfits if SICc, <SICc,.
P(SIC¢,, < SIC:)

=P{F1,n—k—1 > (n—k~1)(exp< (n_lc;f_(g))((z—_?__z))—l)}. (14)
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HQ : HQ overfits if HQp. < HQ,.
P{HQ o1 CHQY

i (n—k—l)(exp(@@fgﬁﬂ)—l)]. (15)

We see that these probabilities all follow the F distribution and will be referred to as F-tests.
Now, we consider the SSE of a full model (k+1 variables) and a reduced model (k
variables) where the full model and the reduced model are nested. The

SSE(reduced)-SSE(full) follows the ozx%(/i) distribution since the variables are orthogonal and
all these bzx%(/l) are independent. We denote the reduced model by k and the full model by
SSEk_ SSE;H.I

k+1. In this case, Z follows a x% (possibly non-central) distribution since we

only consider the overfit case and the reduced model contains every important variables ; a

SSE;+) 9 . .
2 follows central x5,—x-; since we assume that the k+1 full model includes every

important variable. These x2 distributions are independent and form the basis of the
F-distribution.

Table 1 presents probabilities using equations (11)-(15) for preferring order k+1 over the
current order k. In table 1, n is the sample size, £= Rank(X), and K is the number of total
variables including the intercept. When the sample size increases, the probabilities of
overfitting for AIC, SIC, SICc, and HQ tend to decrease, probabilities of overfitting for AICc
increase. When K increases, there is no change in the probabilities in Table 1. When k
increases, probabilities of overfitting of AIC, SIC, and HQ increase due to linear penalty
functions of their equations. When k increases, probabilities of overfitting of AICc and SICc
decrease due to dividing by n-k-2 in their penalty functions. Probabilities of overfitting for
SICc are smaller than those of the any other model selection criteria. We say SICc has the
strongest penalty function.

Consider the case where more than one candidate model is considered, which is a multiple
testing situation. Orthogonal regression yields independent chi-squares, and we overfit if any
of the overfit candidate models are selected. Table 2 presents probabilities assuming iLid.
F-tests. K denote the maximum possible model order (total number of variables plus the
intercept) and k denote the model order. There are K— k overfit candidate models from which

to choose. Let @ be the probabilities of selecting one additional variable when only the
curtent model is compared to one candidate model containing one additional variable.
Equations (11)-(15) represent « probabilities. Assuming independence for illustration purpose,
the probability of favoring an order k+1 model cver the current order k model is
1—(1—a)® % Table 2 presents these probabilities.

In Table 2, we can see that the probability of overfitting increases as K increases. With
more candidate models to choose from, the higher the chance of overfitting. As in Table 1,
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model selection criteria with stronger penalty functions have smaller probability of overfitting.
Probabilities for K = 6 and k = 5 are the same as in Table 1 since there is only one
candidate model to compare to the current model. The probability of overfitting AIC decreases
when the sample size is increased. The probability of overfitting AICc increases when the
sample size is increased. The probabilities of overfitting SIC and HQ decrease when the
sample size increased.

The probabilities of overfitting for most of these model selection criteria are large when
the sample size is small. When K increases, probabilities are quite large due to the increase in
candidate models. Unlike Table 1, Table 2 display the impact of K. Although the variables are
orthogonal, the F-tests are not independent as we show below. However, the patterns in
overfitting probabilities are the same as including the dependence.

5. Dependent F-tests overfitting probabilities

Consider the case of a model with #m degrees of freedom (the reduced model). Suppose we

want to consider adding one-additional variable from the choice of X, X; such that all

variables X in the reduced model, X, and X, are all orthogonal such that X; X;= n. Let
(X 1 ' Y)Z/ n

F,= 1 . 1 ] ~F1.m—1
Y (L, — - XXy — =~ X1 X, )Y/ (m—1) '
be the F-test statistic for including X; and
X, V)2
F2= ( £ Y) /n ~F1.m—1

Y (L= 5 XoXy' =5 X,X,) Y/ (m—=1)
be the F-test statistic for adding Xs. It can be shown that
E[F\1=E[F;]=(m—1)/(m—3) with variance,
varl F\1 = varl F3]=2(m—1)2(m—2)/((m—5)(m—3)?).
Let A~x?, B~ x? and C~ xzm_z be independent. Reduced model has m degrees of freedom
and the nested full model has m—1 degrees of freedom. Then, F; has the same distribution
as (m—1)A/(C+B) and F, has the same distribution as (m—1)B/(C+A). The
correlation between F; and F, is the same as the correlation between C;= A/(C+ B) and
C,= B/(C+ A). It can be shown that the joint distribution between C; and C, is
(m=2)(1—cycy) ™27
omf crel (1 + ¢py (14 ¢5)) 272
c1>0, >0, ¢l

Evaluating El[c;cy] has no closed form but can be evaluated numerically. For correlation,

ey, er)deyde, - de,dc,, (16)
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m>5 due to the full model having m—1 degrees of freedom. Table 3 presents correlation

between F; and F, For all reduced model degrees of freedom, the strongest correlation is

-0.0958 at m=8. As m, m>8, increases, the correlation goes to zero as F, and F, are

asymptotically independent. This follow from the denominators of F; and F. 2—>02 a.s. In
general, the dependence is weak.

The probabilities of overfitting assuming independence tend to underestimate the
probabilities of overfitting when the F-test dependence is included. Table 4 summarizes the

multiple candidate model overfitting case using the dependence of the F-tests. Table 4 was

constructed assuming that in the true model, the vy, are 7.7.d. Ny, ?) and all #°

distributions are central. The true model is the intercept only. For a randomly selected
reduced model with £ regressors, we have K-— k possible regressors left over. This yields
n— k degrees of freedom for the reduced model. A kesy assumption in Table 4 is that we
have a random sample of remaining possible regressors. Thus, the K—# x% are independent.

Probabilities in Table 4 are produced when the I-tests are not indenpent. Table 5
presents probabilities of overfitting using order statistics from a model where none of the X;
are important to the model.

We found that the weak correlation has little impact on Table 4, and we use the
probability of overfitting AIC decreases when the sampie size is increased. The probability of
overfitting of AICc increases when the sample size is increased. The probabilities of

overfitting of SIC and HQ decrease when the sample size is increased. The probabilities of
overfitting for most of these model selection criteria are large when the sample size is a

small. SIC has a smaller probability when # is large and should have less overfitting than
other criteria when the sample is large. SICc has smaller probabilities than SIC. When K

increases, probabilities are quite large due to the increase in candidate models.
Selecting one of the 1-variable overfit models is equivalent to considering the maximum of

the F-tests. Suppose there are v= K— k extra variables. If P{F (,,> f} then an overfit model
is selected. These F-test for adding one variable to the current model are not independent. As
seen in comparing Tables 2 and 4, assuming independent F-tests leads to underestimating
probabilities of overfitting. For criteria with small probability of overfitting, as useful upper
bound is P{overfit}<va where v is the number of extra variables and « is the probability
from (11)-(15). For model selection criteria with weak penalty functions ( @ large), this bound
is not useful.

Table 5 below considers the usual regression situation where the remaining regressors are

dependent on the included regressors. Table 4 assumes independent x% for the.remaining

K— % variables. These probabilities compare the current model with a candidate model that
includes one additional variable. From selection 2, we showed that the variables are entered
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into the model according to the size of their (X;"X)*/n, which have chi-square distributions.

Consider the case where none of the variables are important to the model. Here, all
chi-square distributions are central and independent due to the orthogonality of the model.
Now, probabilities of including one additional variable depend on the order statistic from

i.i.d. x? random variables. The variable with corresponding to the largest order statistic is
entered first. Once a variable has been entered into the model, the remaining variables are no
Jonger independent i due to the ordering of the (X ,-'X)z/ n. The distribution of the
reduction in SSE for adding the best second variable does not have the same distribution as
K—2 independent xff. Since the independence probabilities underestimate the probability of
the maximum, the independence probabilities can bound the smaller order statistics. This can
be seen in Table 5. Treating the orders £k individually inflates the probabilities of overfitting.
In Table 5, we can see that the probabilities of overfittting decreases quickly for 4> 1. This
is due to the ordering of the (Xj'Y)Z/n.

In general, adding additional variables follows from the order statistics of x% random

variables. Overfitting in orthogonal regression involves order statistics from 7.7.d. central x.

Assuming independence provides an upper bound for overfitting by more than 1 variable.

6. Conclusion

Usual comparisons of one reduced vs. one full model describe the basic behavior of a
model selection criterion. Criteria with stronger penalty functions have smaller probabilities of
overfitting., According to comparing of Table 2 and Table 4, the pattern of overfitting
probabilities of model selection criteria is a little same. Also, the weak correlation has little
impact on Table 4.

Assuming independence for these comparisons can be lead to overfitting the probability of
overfitting due to the variables entering into the model according to their order statistics.
Assuming independent comparisons makes model selection criteria with weak penalty functions
appear to overfit much worse than they do in practice.
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Table 1. Single candidate model case.
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Table 2. Multiple candidate models
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AlIC
0.220
0.293
0.400
0.186
0.213
0.245
0.168
0.177
0.187
0.163
0.167
0.172
0.157
0.157
0.157

AlIC
0.711
0.647
0.400
0.642
0.513
0.245
0.602
0.443
0.187
0.588
0.422
0.172
0.575
0.402
0.157

AICc
0.072
0.025
0.001
0.118
0.094
0.070
0.142
0.133
0.124
0.150
0.146
0.141
0.157
0.157
0.157

AlCc
0.313
0.074
0.001
0.466
0.256
0.070
0.536
0.349
0.124
0.556
0.376
0.141
0.575
0.401
0.157

K=6
SIC
0.183
0.259
0.366
0.105
0.127
0.155
0.054
0.059
0.065
0.034
0.036
0.038
0.002
0.002
0.002

K=6
SIC
0.647
0.593
0.366
0.427
0.336
0.155
0.242
0.167
0.065
0.159
0.104
0.038
0.012
0.007
0.002

SICc
0.069
0.024
0.001
0.062
0.046
0.031
0.042
0.038
0.033
0.030
0.028
0.026
0.002
0.002
0.002

case, with independence.

SICc
0.301
0.069
0.001
0.275
0.132
0.031
0.194
0.109
0.033
0.140
0.082
0.026
0.012
0.007
0.002

HQ
0.263
0.337
0.442
0.166
0.192
0.223
0.107
0.115
0.123
0.084
0.088
0.091
0.035
0.035
0.035

HQ
0.782
0.708
(0.442
0.596
0.473
0.223
0.433
0.307
0.123
0.357
0.241
0.091
0.164
0.102
0.035

AIC

0.186
0.213
0.245
0.168
0.177
0.187
0.163
0.167
0.172
0.157
0.157
0.157

AIC

0.843
0.813
0.755
0.809
0.745
0.645
0.798
0.722
0.610
0.786
0.698
0.575

AlCc

0.118
0.094
0.070
0.142
0.133
0.124
0.150
0.146
0.141
0.157
0.157
0.157

AlCc

0.676
0.498
0.303
0.749
0.633
0.485
0.768
0.668
0.533
0.786
0.698
0.575

K=11
SIC

0.105
0.127
0.155
0.054
0.059
0.065
0.034
0.036
0.038
0.002
0.002
0.002

K=11
SIC

0.633
0.615
0.569
0.393
0.348
0.286
0.268
0.226
0.176
0.022
0.017
0.012

SICe

0.062
0.046
0.031
0.042
0.038
0.033
0.030
0.028
0.026
0.002
0.002
0.002

SICe

0.440
0.280
0.144
0.322
0.236
0.156
0.238
0.180
0.125
0.021
0.017
0.012

HQ

0.166
0.192
0.223
0.107
0.115
0.123
0.034
0.088
0.091
0.035
0.035
0.035

HQ

0.804
0.775
0.717
0.640
0.575
0.482
0.548
0.474
0.380
0.275
0.222
0.164
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Table 3. Correlation (p) of two F-tests. By degrees of freedom for reduced model
(df).

df
6
7
8
9
10
11
12
13
14
15
16

Table 4. Multiple candidate models case,

1
1
1

10
10
10
20
20
20
50
50
50
00
00
00

10000
10000
10000

0

-0.0679
-0.0902
-0.0958
-0.0934
-0.0892
-0.0845
-0.0794
-0.0746
-0.0710
-0.0658
-0.0622

W= AW U W= Jlw— 0w .

AIC
0.792
0.698
0.400
0.674
0.529
0.245
0.613
0.448
0.187
0.593
0.424
0.172
0.575
0.402
0.157

AICc
0.354
0.076
0.001
0.494
0.266
0.070
0.547
0.354
0.124
0.561
0.379
0.141
0575
0.401
0.157

K=6
SIC
0.732
0.646
0.366
0.453
0.348
0.155
0.247
0.169
0.065
0.161
0.105
0.038
0.012
0.007
0.002

df
17
18
19
20
21
22
23
24
25
26
27

SICc
0.339
0.071
0.001
0.292
0.136
0.031
0.198
0.110
0.033
0.141
0.082
0.026
0.012
0.007
0.002

-0.0588
-0.0657
-0.0529
-0.0505
-0.0482
-0.0460
-0.0441
-0.0421
-0.0410
-0.0390
-0.0379

no independence.

HQ
0.854
0.757
0.442
0.628
0.489
0.223
0.443
0.311
0.123
0.360
0.242
0.091
0.164
0.102
0.035

AIC

0.924
0.902
0.869
0.862
0.809
0.726
0.840
0777
0.683
0.786
0.698
0.575

df

0

28 -0.0363
29  -0.0355
30 -0.0337
50  -0.0206
100 -0.0096
500  -0.0019
1000 -0.0011

10000
100000

o0

K=11
AlCc SIC

0.788 0.746
0.607 0.731
0.38 0.690
0.808 0.443
0.703  0.400
0564 0.342
0.814 0.299
0.726  0.258
0.606 0.210
0.786  0.022
0698 0.017
0575 0.012

0.0005

-0.0002

0

SICc

0.533
0.345
0.181
0.365
0.274
0.189
0.265
0.207
0.150
0.021
0.017
0.012

HQ

0.897
0.874
0.829
0.704
0.645
0.561
0.597
0.529
0.442
0.275
0.222
0.164
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Table 5. Order statistics, conditional probabilities.

K=6 K=11
) k AIC AICc SIC SICc HQ AIC AICc SIC SICec HQ
10 1 0792 0354 0732 0339 0.854 - - - - -
10 3 0.303 0.008 0.253 0.007 0.371 - - - - -
10 5 0.034 0.000 0.027 0.000 0.045 - - - - -
20 1 0674 0494 0453 0292 0.628 0924 0788 0.746 0533 0897
20 3 0.106 0.019 0.036 0.004 0.08 0576 0178 0292 0.050 0511
20 5 0.003 0.000 0.001 0.000 0.002 0.230 0.013 0.083 0.002 0.189
50 1 0.613 0547 0247 0.198 0.443 0.862 0.808 0.443 0.365 0.704
50 3 0.051 0.025 0.003 0.001 0.018 0318 0.188 0.033 0.012 0.140
50 5 0.000 0.000 0.000 0.000 0.000 0.046 0.011 0.001 0000 0.011
100 1 0593 0561 0161 0.141 0.360 0840 0.814 0299 0265 0597
100 3 0.040 0.028 0.001 0.000 0.007 0.253 0.193 0.007 0.004 0.064
100 5 0.000 0.000 0.000 0.000 0.000 0.025 0.012 0.000 0.000 0.002
10000 1 0575 0575 0012 0.012 0.164 0.786 0.786 0.022 0.021 0275
10000 3 0.030 0.030 0.000 0.000 0.000 0.200 0199 0.000 0.000 0.004
10000 5 0.000 0.000 0.000 0.000 0.000 0.012 0.012 0.000 0.000 0.000
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