CuO ${B_2}{O_3}$첨가에 따른 $PbWO_4$-$TiO_2$세라믹스의 마이크로파 유전특성

Effects of CuO and ${B_2}{O_3}$Additions on Microwave Dielectric Properties of $PbWO_4$-$TiO_2$Ceramic

  • 최병훈 (순천향대학교 신소재화학공학부) ;
  • 이경호 (순천향대학교 신소재화학공학부)
  • 발행 : 2001.11.01

초록

적층일체형 RF 수동소자 모듈 구현을 위한 저온소결 유전체로의 사용을 위해 B$_2$O$_3$ 및 CuO의 첨가가 PbWO$_4$-TiO$_2$계 세라믹의 고주파 유전특성에 미치는 영향을 조사하였다. 본 연구자는 PbWO$_4$가 8$50^{\circ}C$에서 소결이 가능하고 우수한 유전특성($\varepsilon$$_{r}$=21.5, Q$\times$f$_{0}$=37200 GHz, $ au$$_{f}$ =-31 ppm/$^{\circ}C$)을 보여 LTCC 재료로의 응용가능성이 있다고 판단하였다. 이에 PbWO$_4$$\tau$$_{f}$ 조절을 위해 TiO$_2$를 첨가하여 8$50^{\circ}C$에서 소결한 결과 TiO$_2$의 함량이 8.7 mol%일 때 $\tau$$_{f}$ 를 +0.2ppm/$^{\circ}C$로 조절할 수 있었고, 이때 $\varepsilon$$_{r}$ 및 Q$\times$f$_{0}$ 값은 각각 22.3과 21400GHz이었다. TiO$_2$첨가량 증가에 따른 Q$\times$F$_{0}$ 값의 감소는 결정립 크기 감소에 의한 것이었다. Q$\times$f$_{0}$ 값의 개선을 위해 다양한 량의 CuO 및 B$_2$O$_3$를 첨가한 결과, 최적의 유전특성을 얻기 위해서는 적정량의 첨가량이 필요함을 알 수 있었다. CuO 첨가의 경우 유전특성 개선을 위한 최적의 첨가량은 0.05 wt%이었고 이 조성을 8$50^{\circ}C$에서 소결한 결과, 얻어진 유전특성은 $\varepsilon$$_{r}$=23.5, Q$\times$f$_{0}$=32900 GHz, $\tau$$_{f}$ =-2.2 ppm/$^{\circ}C$이었다. B$_2$O$_3$첨가의 경우 최적의 첨가량은 1.0~2.5 wt%이었으며 8$50^{\circ}C$에서 소결한 경우 얻어진 유전특성은 $\varepsilon$$_{r}$20.3~22.1, Q$\times$f$_{0}$=48700~54700 GHz, $\tau$$_{f}$ =+2.4~+8.2ppm/$^{\circ}C$이었다.

Effects of B$_2$O$_3$and CuO addition on the microwave dielectric properties of the PbWO$_4$-TiO$_2$ceramics were investigated in order to use this material as an LTCC material for fabrication of a multilayered RF passive components module. We found that PbWO$_4$could be used as an LTCC material because of its low sintering temperature (8$50^{\circ}C$) and fairy good microwave dielectric properties($\varepsilon$$_{r}$=21.5, Q$\times$f$_{0}$=37200 GHz and $\tau$$_{f}$ =-31 ppm/$^{\circ}C$). In order to stabilize $\tau$$_{f}$ of PbWO$_4$, TiO$_2$was added to the PbWO$_4$and the mixture was sintered at 8$50^{\circ}C$. A near zero $\tau$$_{f}$ value (+0.2 ppm/$^{\circ}C$) was obtained with 8.7 mol% TiO$_2$addition. $\varepsilon$r and Q$\times$f$_{0}$ values were 22.3 and 21400 GHz, respectively. It was believed that the decrement of Q$\times$f$_{0}$ value with TiO$_2$addition was resulted from increasing grain boundary. In order to improve Q$\times$f$_{0}$, various amounts of B$_2$O$_3$and CuO were added to the 0.913PbWO$_4$-0.087TiO$_2$mixture. The optimum amount of CuO was 0.05 wt%. At this addition, the 0.913PbWO$_4$-0.087TiO$_2$ceramic showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$ =-2.2ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32900 GHz after sintered at 8$50^{\circ}C$. In case of B$_2$O$_3$addition, the optimum amount range was 1.0~2.5 wt% at which we could obtain following results; $\varepsilon$$_{r}$=20.3~22.1, Q$\times$f$_{0}$=48700~54700 GHz, and $\tau$$_{f}$ =+2.4~+8.2ppm/$^{\circ}C$.

키워드

참고문헌

  1. IEEE EPEP Digest The Impact of Passive Component Integration in Mixed-signal Application R. C. Frye
  2. IEEE ETCT Digest Economic and Technical Variability of Integral Passive J. Rector
  3. International Journal of Microcircuit and Electronic Packaging v.16 no.4 Te Integration of Passive Components into MCMs Using Advanced Low-temperature Cofired Ceramics R. L. Brown;P. W. Polinski
  4. IEEE MTT-S Digest v.3 Design and Performance of UHF band Inductors. Capacitors and Resonators Using LTCC Technology for Mobile Communication Systems W. Eurskens
  5. Jpn. J. Appl. Phys. v.31 no.9B Low-fire Bismuth-base Dielectric Ceramics for Microwave Use H. Kagata;T, Inoue;J. Kato;I. Kameyama
  6. Am. Ceram. Soc. Trans. v.32 Low Temperature Fireable Dieletric Ceramics Material H. Mandai;S. Okubo
  7. IRE Trans. Microwave Threory Tech. v.MTT-8 A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range B. W. Hakki;P. D. Colemann
  8. IEEE Trans. Microwave Theory Tech. v.MTT-18 no.8 Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators W. E. Courtney
  9. IEICE Japan Calculation of Resonant Frequncy and Unloaded Q for Dielectric Loaded Cavity Resonator Used in Premittivity Measurement in UHF Band Y. Jing;Y. Kobayashi
  10. J. Mater. Res. v.12 no.12 The Effect of Cr and La on MgTiO₃and MgTiO₃-CaTIO₃Microwave Dielectric Ceramics V. M. Ferreira;F. Azough;R. Freer;J. L. Baptista
  11. Ph. D. Thesis A Studyon the Microwave Dielectric Properties of CaTi₃-La(Zn½Ti½)O₃and CaTiO₃LaAlO₃Systems for Mobile Communication D. H. Yeo
  12. Jpn. J. Appl. Phys. v.21 no.12 Ba(Zn⅓Nb⅔)O₃-Sr(Zn⅓Nb⅔)O₃Solid Solution Ceramics with Temperature Stable, High Dielectric Constant and Low Microwave Loss M. Onoda
  13. Jpn. J. Appl. Phys. v.30 no.9B Dielectric Characteristics of (A¹+ ½A³+ ½)TiO₃Ceramics at Microwave Frequences H. Takahashi;Y. Baba;K. Ezaki;Y. Okamoto;K. Shibata;K. Kuroki;S. Nakano
  14. Jpn. J. Appl. Phys. v.33 no.9B Dielectric Properties of Ca-based Complex Preovskite at Microwave Frequencies H. Kagata;J. Kato
  15. J. Mat. Res. v.2 no.1 Constrained Network Model for Predicting Densification Behavior of Composite Powders F. F. Lange
  16. Materials Research Society Symposium Proceedings, Processing of Advanced Ceramics v.155 Densification of Particulate Ceramic Composities: The Role of Heterogeneities L. C. De Jonghe;M. N. Rahaman;I. A. Aksay(ed.)
  17. Kor. J. Mater. Res. v.7 no.9 Microwave Dielectric Properties of Bi₁-xNdxNbO₄Ceramics M. R. Moon;K. S. Bae;K. Y. Kim
  18. J. KIEEME v.14 no.3 Effect of Li Addition on the Microwave Dielectric Properties of MgTiO₃-CaTiO₃Ceramic Dielectric J. W. Hahn;D. Y. Kim;D. S. Jun;S. S. Lee
  19. J. KIEEME v.14 no.3 The Structural and Microwave Dielectric Properties of (1-x)Ba(Mg⅓Ta⅔)O₃-xBa(Co⅓Nb⅔)O₃(x=0.25~0.5) Ceramics T. K. Hwang;E. S. Choi;I. H. Im;Y. H. Lee
  20. J. Am .Ceram. Soc. v.82 no.8 Effects of Sm³+ Substitution on Dielectric Properties of Ca₁-xSm₂x/₃TiO₃ Ceramics at Microwave Frequencies W. S. Kim;E. S. Kim;K. H. Yoon