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PROJECTIVE SCHUR ALGEBRAS
AS CLASS ALGEBRAS

EunMi CHol AND HEISOOK LEE

ABSTRACT. A projective Schur algebra associated with a partition
of finite group G can be constructed explicitly by defining linear
transformations of G. We will consider various linear transforma-
tions and count the number of equivalent classes in a finite group.
Then we construct projective Schur algebra whose dimension is de-
termined by the number of classes.

1. Introduction

Let G denote a finite group, F' a field of characteristic p > 0 and
F* = F\ {0} the multiplicative group of F with trivial G-action. For a
2-cocycle o in Z2(G, F*), let F®G be the twisted group algebra over F
with F-basis {u4lg € G}, w1 = 1 = 1pag such that ugu; = a(g, T)ug,
for all g,z € G.

Let P = {&|g € G} be a partition of G consisting of equivalence
classes £, of G. Denote by Gy a set of representatives of the distinct £,
and by of =37 ¢ u, the class sumin FG. & ={aze&}eP
for all £;, then the subalgebra S = ®gegy F' 03’ of F*G with unit element
1 is called a projective Schur algebra in F*G with partition P. If a = 1,
the subalgebra generated by ergg z in F'G is called a Schur algebra in
F'G associated with P. We may refer to [1], [3], and [4].

In this paper we study projective Schur algebras with respect to cer-
tain partitions of G. Various equivalent classes of GG afforded by some
linear transformations of G will be studied and the number of equiv-
alent classes will be calculated. Upon using the classes, we construct
some projective Schur algebras where the dimension of the algebra is
determined by the number of equivalent classes.
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Throughout the paper, we always let H < G and use the same nota-
tion o € Z2(G, F*) for the restriction of o to H x H. For any G-action
7on X (X: any set), we denote by O.(z) and St (z) the orbit and the
stabilizer of x € X under 7.

2. Regular classes of finite groups

An element g € G is a-regular if a(g, z) = a(z, g) for all x in the cen-
tralizer Cg(g) of g. A conjugacy class containing an a-regular element
g is called an a-regular class and denoted by Rg(g). A 2-cocycle « is
standard if a(z,z7!) = 1 and a(z,g) = a(z'gz,z) for all z € G and
all a-regular g € G. If F is an algebraically closed field of characteristic
0 then any cohomology class & € H2(G, F*) contains a standard cocy-
cle. If & is standard then all the a-regular class sums in each regular
class form an F-basis of the center Z(F*G) of F*G, thus dimZ(F*G)
is equal to the number of distinct a-regular classes of G.

For H < @G, two elements g, z in G are said to be H-conjugate
if z = h~lgh for some h € H. Clearly H-conjugacy is an equivalent
relation on G, thus we can say H-class in G and denote it by Cy(g) =
{h='gh |h € H}. If G = H then Cg(g) is the conjugate class of g € G.
An element g € G is called a-H-regular if a(g,h) = a(h,g) for all
h € Cu(g) = {h € H|h = g~1hg} the centralizer of g in H. An H-class
with an a-H-regular element g is called an a-H-regular class of g, and
denoted by Ry(g):

Ru(g) = {h~tgh | h € H, g: a-H-regular}.

If @ =1 then Ry(g9) = Cy(g). Each conjugacy class of G is a union of
H-classes in G and an H-class containing an element of H is a conjugacy
class of H.

LEMMA 2-1. [5, (6.2.3)] If F is an algebraically closed field of char-
acteristic 0 (or a splitting field for F*@) and if « is standard, then
the number of nonequivalent irreducible a-representations of G over F

equals the dimension of Z(F*Q). Also a-H-regular class sums form an
F-basis for the centralizer Creg(F*H) in F°G.

If o = 1, a-regular class is the conjugacy class and the number of
irreducible F’G-module is that of classes of G which equals dimZ(FG).
Thus dimZ(F*G) < dimZ(FG) < dimCpg FH) and dimZ(F*G) <
dimCpag (F*H) < dimCrg(FH).
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Let F be any field of characteristic p and let E be an algebraic closure
of F with Galois group G = Gal(E/F). Then E ® F*G = E°G is
a twisted group algebra obtained from F®G by extending the field of
scalars to E.

Choose positive integers n and m(co) for each o € G satisfying

(1) exp(G)|n, and Eny = sﬂp(,") while m(c) =1 (mod np)

where n, and n, are p- and p'-parts of n such that n = npyn,, and En,
is a primitive ny-th root of unity in E. If p=0or p /|G| then n, =1
and ny = np.

Two elements g,z in G are called F-conjugate if z = 271 gm("_l)z for
some z € G and ¢ € §. For H < G, since exp H divides exp G, we may
choose n and m(o) work for both G and H. If there is (0,h) € G x H
such that © = h~1g™( “h then g and zx are said to be F-H-conjugate.
Since both F-conjugacy and F-H-conjugacy are equivalence relations,
we have F-class pCg(g) and F-H-class rCr(g) in G. In fact,

FCulg) = {h'¢™ Db | he H, c €G}.
We first remark simple but useful properties of F-H-classes.

LEMMA 2-2. For H < G, we have the following.

(i) Each F-class of G is a union of F-H-classes. An F-H-class con-
taining an element of H is an F-class of H. Each F-classes of H
are F-H-classes in G.

(ii) Each F-H-class, as a set, commutes with every element of H. The
inverse of the elements of an F-H-class forms an F-H-class. The
product of two class sums of F-H-classes is a class sum of F-H-
class.

Proof. Let g € G. If an F-H-class rCy(g) contains an element h € H
then h = a~1g™“ g for some a € H, o € G. Since g = (aha=1)™?) =
ah™9)q~1 ¢ H, we have rCu(g) = rCu(k) for some k € H, ie., an
F-class of H.

For any a~! g™ ) a € pCy(g) with a € H, o € G, we have h -
a~lg™ g = ha=lg™ Dagh=1. h for all h € H. This shows that
h-rCu(g) = rCu(g) - h.

Finally, for g; € G if 0, =37, ¢ ¢, () # then of of, = 3= 5 ng 08,
where ng, are nonnegative integers. This completes the proof. O
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For each g € G, choose an element v(g) € E as an n-th root of t(g)
such that

n—1
(2) v(g)" =t(g) where t(g) = []aid’.g) €F.
i=1
Write F*G = I'. Define maps Kr : G — Aut(E*G) and S : G —
Aut(E*G) by
Kr(@)u, = g
We also define kg : G — Aut(G) and sg : ¢ — Aut(G) by kg(x)g =

r gz and sg(o)g = g™ ). Let dg = sg x kg and Dr = Sp x Kr.
Then

1 m(oc~1) m(a‘l)‘

ugty and Sr(ojug = v(g)”_l’U(g)_ Ug

da(0,2)(9) =2~ 'g™ a
and _1 _1 _1
Dr(o,z)uy = v(g)" v(g)™™ Jug g .

It was proved in [6] that sg and St are G-actions on G and E*G
respectively, while de and Dr are G x G-acticns on G and E“G respec-
tively. The mappings do not depend on the choices of n,m(c) and v(g)
in (1), (2).

For a € Z%(G, F*), an element g € G is called (F, a)-regular if

v(9)”” v(g) ™™ D Dy =y for all (0,2) € G x G

such that x_lgm("_l)a: = g. An F-conjugacy class is called an (F,«)-
regular class pRg(g) if it contains an (F, a)-regular element g. Simi-
— _ —1
larly, g € G is (F, a)-H-regular if v(g)?” v(g) ™ 1)u;1u;n(a Ju
for all (o, h) € Gx H such that A~ g™ ™) = g. Thus an F-H-class con-
taining an (F, a)-H-regular element is called an (F,a)-H-regular class

and is denoted by
FRu(g) = {h_lgm("_l)h | (o,h) € G x H, g: (F,«a)-regular}.

h = Ug

For g € G, h € H and a € E*G, we denote the restrictions to G x H
as following:

Dr|g : G x H — Aut(E*G)
by Dr|u(o,h)a = U(g)g_lU(Q)"m(a_l)uham("_l)uh
dali : G x H — Aut(G)

by dglu(o,h)g=h"tg™ Dp,
And kg|a(h)g = h™1gh while Kr|p(h)a = uj  aus,.
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We develop a convenient way to express regularity properties by the
mappings dg and Dr and by their stabilizers Sty (9), Stqy),(9),

Stxryy (@) and Stp, (a).

THEOREM 2-3. An (F, o)-regular class is a union of F-classes which
is also a union of F-H-classes of G. Moreover
(i) g is a-regular if and only if St (ug) = Sty (g), while g is (F, a)-
regular if and only if Stp, (ug) = Stq.(9).
(ii) The a-regular class is {kg(z)g | * € G, Str,(g) = Strp(ug)},
while (F, o)-regular class is {dq(o,x)g | (0,z) € G x G, Stq,(g9) =
St (ug)}.
(i) g is a-H-regular if and only if Sty (ug) = Sty (9), while g is
(F, a)-H-regular if and only if Stp.|, (ug) = Stay, (9)-

Proof. Similar to Lemma 2-2, it is easy to see that set of (F,a)-
regular elements is a union of F-classes and an (F, a)-regular class is a
union of (F,a)-H-regular classes. Due to the constructions of kg and
dg, we have the following sets:

Stra(9) = {x € G| g =z7ga}, Stry(uy) = {z € G| ug = uj ugu,},
Sta.(9) = {(0,2) € G x G| g = z71g™" )z}

-1

Stor (ug) = {(0,2) € G x G| v(9)v(g) ™ Dz uf " Dy = ug}.

For (i) and (ii), we may refer to [2]. Now for (iii), since Stz ,, (ug) =
{h € Hlu; 'ugup, = u,} and Sty (9) = {h € H|h™1gh = g} for any
g € G, it is easy to see that

StKrlH(ug) c Stkclﬂ(g) and StDrlH(ug) c SthIH(g)'
If g € G is a-H-regular then u;luguh = ugy for any h € H such that
h™lgh = g, thus it is equivalent to say Sty (ug) 2 Strg,(9), ie.,
Strepyy (tg) = Stigy, (9)-
On the other hand, we have
Staglu(9) = {(0,h) € G x H | h™'g™ Ih =g} and

Sty (ug) = {(0,1) € G x H | v(9)” w() ™™ Duz e Dy, = g},
Therefore, g is (F,a)-H-regular if and only if Dr|g(o,h)uy = ug for
(0,h) € G x H with dg|u(o,h)g = g if and only if Stp |, (uy) =
Stq.|, (9), this completes the proof. O

Similar to the notation Sty (g) = Cg(g) the centralizer, we let Stq,, (g)
= pCq(g) be the F-centralizer. We also denote by RCg(g) = {z €
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G |z gz = g,g : o-regular} the a-regular centralizer of g. Then we
have

RCs(9) = {z €Glgr =zg,a(9,2) = a(z,9)}
= {z € Glugue = ugug} = {z € G|Kr(x)uguy} = Stxp (ug).

We denote by
FRCG(g) = {(0,2) € G x Gla™'¢"™ Va = g,g : (F, )-regular}

the (F, a)-regular centralizer of g, then it is equal to Stp (ug). Therefore
the next corollary follows immediately from Theorem 2-3.

COROLLARY 2-4. An element g € G is a-regular if and only if
Cg(g) = RCq(yg), and g is (F,a)-regular if and only if pCq(g) =
rRCc(9).

We now count the number of F-classes of G that will extends parts
of [7].

THEOREM 2-5. Let f(G) and f(H) be the numbers of F-classes of
G and H respectively, and f¥(G) be the number of F-H-classes of G.
Then

(1) f(G) = oxa1 Lyec [FCa(9)l and f(H) = gz Yhen [FCu(B)].
(ii) f7(G) = s Xgec IFCH(9)| = gem Lnen [FCa(R)].

Proof. We first observe a general result about permutation represen-
tations. Let £ be any group (possibly infinite) that act on a finite set
X under the action 7 :  — Perm(X). Then the number of Q-orbits in
X, say nq(X) is

1
ng(X) =y ———
@ I;( Q0 : St (z)]

where St (z) is the stabilizer of z in Q. And |Q : St.(z)| = |O(z)| the
Q2-orbit of z. In case Q is finite, na(X) equals |le‘| D owex 1Str(z)].

For orbits of the mappings described in (3), we have Oy, (9) =
{h=lgh|h € H} which is the H-conjugacy class Cy(g) in G, while
Ougln(9) = {h~2g™ Dh|(a,h) € G x H} which is the F-H-conjugacy
class pCh(g) in G.

Thus G x G-orbit in GG under d¢ is an F-class in G so that the number
of F-classes in G is }_ ¢ mslw. Since Stq.(9) = rCal(yg), it
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follows that f(G) = Tg_>1<G—| >_gec IFCc(g)].  Similarly, we can conclude
(i) by showing

f(H) = Z G Sth l and Stg,, (h) = rCr(h).

Considering dg|w : G x H — Aut(G), a G x H-orbit in G under dg|n
is an F-H-class in G and the number f#(G) of F-H-classes in G is

1
— C
Z |g x H: StdclH( )16 < H] gGZG‘F "

Due to the relation > . |FCH(9)| = X4en 1FCa(R)], (i) follows im-
mediately. O

THEOREM 2-6. Under all the same notations in Theorem 2-5, we
have the following.

(i) f(H) <|G: H|f(G). And f(G) < |G : H|f(H) with equality if
and only if pCg(g) - (G x H) =G x G.

(ii) f(G) < fH(G) and f(H) < fH(G). Moreover for any subgroups
K and L with L < H < K < G, we have f&(G) < f#(G) and
JHH) < 46

Proof. Due to Theorem 2-5, we have

() = I?LFI > 1+Cult)

IQxH[ZlFCG

heH

G xG| 1
~ |G x H||G x G|

= |G : H|f(G).

|[FCa(9)]

Since pCq(g) N (G x H) = pCx(g) for all g € G, we have |G x H :
FCH(9)| < |1GxG : pCs(g)|, that is, |FCe(g9)| < |G : H|-|rCx(g)|.- And
the equality hold if and only if pCg(g) - (G X H) = G x G. Therefore,
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we have

f(G)= l_g—xlﬁ Z |FCc(9)
<5 xHI > IrCuo)

|g ><H| Z IrCe(h

heH

heH
= |G : H|f(H).

Moreover it follows that

f(G) = |g_iG_| Z |[FCa(9)

IQxH]ZIFCH
:fH( )7

1
(@) < g7 2 IFCa(9)
G > Hi QZG !

16 _1 s
= |FCea(9)
[H[1G % Gl 2

= |G : H|f(G).

For any H < K < G and for g € G, since pCx(g)N(GxH) = pCy(yg),
we have fX(G) < fH(G). On the other hand, for L < H < G it also
follows that

FHH) = 1o LlZIFoL < GxT L|>_,|F CLol =16 o

heH

COROLLARY 2-7. For H < G, let n(G) and n¥(G) be the numbers of
classes and H-classes in G respectively. Let g,z € G and h € H. Then

©) n™(G) = 17 Xgec [CH )| = iy Lher ICa(R)].

(ii) n(G) < nf(G) and n(H) < nf(G). Moreover nf1(G) < |G :
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(iii) For subgroups L < H < K of G, we have
nf(H) < n¥(G), n"(H) < |H : LIn(H) and »5(G) < n"(G).
Thus n(G) = n(G) < n%(G) < n7(G) < i} @) =|qG|.

Proof. The class and H-class in G are determined by mappings
ka(z)g = 27 gz and kg (h)g = h~*gh. Thus

1 1
n(G) = '—G—'g};ISth(g)l =G > [Ca(9)l-

g€G
And the rest of the proof follows from Theorem 2-6. (l

- THEOREM 2-8. Let G = G1 x Gy and H = H; x Hy with H; <
Gi. Then we have f(G) = |g|f(G1)f(G2), n(G) = n(Gl)n(Gg) and
FHG) = 1GIf T (G1) 2 (G).

Proof. It is not hard to see that rCq(g) = rCgq, (91) X rCq,(g2) for
g € G such that g = (g1,92) € G; X G3. Thus we have

1
f(G) = el QEZG |[FCa(g)|

1 : Z Z |FCa, (91)|FCa,(92)]

lgl lGlHGZl 91€G1 g2€G2

= |91f(G1)f(G2)
and similarly, we have

Hypy 11
£46) = Gt 2 1rCe: @llrCe, (o)

=G| f(G1) fH2(Ga). O

3. Schur and projective Schur algebras

Let S be a projective Schur algebra of F*G with partition P =
{&€;]lg € G} of G. If P is afforded by an action 7 on G then we shall call S
a projective Schur algebra associated with 7. For H < G, let S’ be a pro-
jective Schur algebra of F'*H associated with partition P’ = {£}|h € H}
of H. For each h € H, if £ =UE; for some g € G then S’ is called a
projective Schur subalgebra of S in F*G.

In this section we shall construct projective Schur algebras explicitly
according to the linear transformations described in previous section.
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THEOREM 3-1. Let F be a field of any charF' = p > 0.

(i) There are projective Schur algebras Ay in F*G and Ay in F*H
associated with dg and dg respectively. And there is a projective
Schur algebra Az in F*G associated with dg|g.

(ii) There are projective Schur algebras BE; (i = 1,2,3) with parti-
tions of (F, a)-regular classes in G, (F, «)-regular classes in H and
(F, @)-H-regular classes in G respectively. And B; is a projective
Schur subalgebra of A;.

Proof. Obviously Oy, (g) is the F-conjugate class pCa(g) of g € G,
Oug(97") = 04 (9)™! and Oy, (e) = {e}. By taking o} = Zze(')dc(g) Uy
in F*G, A; = ©4Fo} is a projective Schur algebra in F*G where the
sum runs over ¢ in the set of all representatives of distinct orbits.

Similarly, the set of orbits Oy, (9) = #Cu(g9) (9 € G) makes a
partition of G and Oy, (971) = Oy, (9)7". Hence the algebra Az =
®gFo} generated by the class sums of = Z:zeodcm(g) u, € FoG is a
projective Schur algebra in F*G.

Consider the set P; of (F,a)-regular classes pRg(g) in G. Then the
set of (F,a)-regular classes of G forms the partition P; = {rR¢(9)| g €
G} of G, and clearly if g is (F,a)-regular then so is g~!. Moreover
FRc(g™!) = FRg(g9)™! and FR¢(e) = {e}, thus by taking 4 the (F,a)-
regular class sum of pFRg(g) in F*G, we have an F-algebra B; generated
by all r} where g is an element in distinct (F',or)-regular classes. This is
a projective Schur algebra in F*G associated with P;. Due to Theorem
2-2, each (F,a)-regular class containing g € G is a union of F-classes so
that B is a projective Schur subalgebra of A;.

Let Po = {FRu(h)| h € H} be the set cf (F,a)-regular classes in
H and P3 = {FRu(g)| g € G} the set of (F,a)-H-regular classes in G.
Then similar construction can be applied to B, and Bjs, so that B; is a
projective Schur subalgebra of A;. O

THEOREM 3-2. Let F' be a field of any charF = p > 0 and all the
notations A; and B; (i = 1,2,3) are as in Theorem 3-1.

(i) dimA, = lg_Xl_GT > gec IPCa(g)l, dimAy = m Y hen |[FCH(B)]|
and dimAz = WQ_HI > gec |[FCH(g)|, where rCc(g) is the F-
centralizer of g in G, and etc.

(ii) dimB; = ﬁ > gerc. [FCc(9)], dimBy = @1_1{1 > hept, [FCH(R)
and dimBs3 = l?i—Hl EQEFGQH |FCHu(g)| where pGy, [resp. pGuon]
is the subset of all (F,«) [resp. (F, a)-H|-regular elements in G.
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Proof. The dimensions of each algebra in (i) Theorem 3-1 are deter-
mined by the numbers of corresponding classes, hence (i) follows from
Theorem 2-5.

Now for (i), if g € pGq then its F-conjugation z=1¢™“ )z for all
(0,7) € G x G is (F,a)-regular. Thus ¢, : G x G — Perm(rG,,) defined
by

Ya(o,2)(g) = z7lg™e g with (0,2) €eGx G
is a G x G-action on pG,. Then the orbit

Oy, (9) = {7 g™ Va| (0,2) € G x G}
is the (F, a)-regular class and the stabilizer
Sty (9) = {(0:2) € G x Gl w(g)” v(a) ™™ g T D = g}

is the FRCg(g) (see Corollary 2-4). Since g is (F,a)-regular, it follows
that Stwa (g) = FCG(!])-

Similarly, we also have a Gx H-action ¢, : Gx H — Perm(pG o) such
that ¢o (o, h)(g) = R=1gm™ D for (6,h) € Gx H and g € pGay. Then
the orbit Oy, (9) = rFRu(g) while the stabilizer Sty (g9) = {(o,h) €
Gx H| h~lgme™p =g, g (F,a)-H-regular} is the pRCy(g), and
consequently this is equal to pCy(g). Therefore (ii) follows from Theo-
rem 2-5. O

COROLLARY 3-3. Assume that F is an algebraically closed field of
characteristic 0.

(1) There are projective Schur algebras A; (i = 1,2, 3) associated with
ka, ku and kg|g respectively, and B; (i = 1,2,3) with partitions
as a-regular class of G, a-regular class of H and a-regular H-class
of G respectively. Each B; is a projective Schur subalgebra of A;.

(i) dimAy = 53, 1C6(9)|, dimA; = 18] 2ok [Cr(h)| and dimAz =
TFITI 2.4 |Cr(g)l. Moreover dimB; = ]—(1;—| 2 gea. 1Ca(9)|, dimBy =

|—111§ >heH, |Cu(h)| and dimB; = ﬁ 2 9cG.y |CH(9)|, where Gq
[resp. Gam] is the set of all o [resp. a-H |-regular elements of G.

(iii) In particular if « = 1 then A; = Z(FG), A2 = Z(FH) and
As = Cpg(FH). And for any o € Z*(G,F*), By = Z(F*G),
By = Z(F*H) and Bs = Cpag(F*H)

Proof. In case that F is an algebraically closed field, we may consider
dg = kg. Obviously O (g) is the conjugacy class Cg(g) of g € G,
Ok (971) = Okg(g)™! and Og.(e) = {e}. Thus (i) and (ii) follow
immediately.
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The algebra in F'G generated by class sums is Z(FG) and the algebra
in FG generated by H-class sums is Cpg(I'G). Similarly, the algebra
in F*G generated by a-regular class sums is Z(F*G) and the algebra in
F2G generated by a-regular H-class sums is Crag(F*H). Hence (iii)
follows immediately. O
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