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A NEW UPPER BOUND FOR SINGLE
ERROR-CORRECTING CODES

JuN Kyo Kim

ABSTRACT. The purpose of this paper is to give an upper bound for
Aln, 4], the maximum number of codewords in a binary code of word
length n with minimum distance 4 between codewords. We have
improved upper bound for A{12k + 11,4]. In this correspondence
we prove A[23,4] < 173716.

1. Introduction

In this paper we present an upper bound for A[n, 4], the maximum
number of codewords in a binary code of length n with minimum distance
4 between codewords. An [n,d] code is a code of length n in which any
two words have distance at least d. An [n,d,w] code is an [n,d] code in
which all words have weight w. An [n,d] code for which the maximum
is archived is called optimal. The maximum number of codewords of an
[, d] code is denoted by A[n, d]. This function An,d] and A[n, d, w], the
number of codewords in an optimal {n,d,w] code, has been studied by
many authors. Earlier bounds on Aln, d] were given in {7, 11, 2, 1] (also
[5, Chapter 9]). Whereas they used the linear programming approach
to get upper bound for A[n,d], in a recent paper of [8] they have got
improved general upper bound for A[6k+5, 4] by combinatorial methods.
We obtain the improved upper bound for A[12k + 11,4]. In the present
paper we give upper bounds for A[n, 4] :

2"~14[n, 4, 3]

(1) A[n, 4] < (5) —44[n,4,4] + nAn,4,3]
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In this correspondence we prove A[23,4] < 173716. For convenience we
define some notations and conventions used in this paper. The weight
distribution of a code is the sequence (W;)7, where W; equals the num-
ber of codewords of weight i. - The distance distribution of C is the
sequence (A;)7_, where A; equals the average number of code words at
distance ¢ from a fixed codeword, i.e.,

1 .
4 =15 > Hyly € C and d(z,y) =1},
zeC

All codes are binary codes of length n with minimum distance 4. Let
neN,re{0,1,--- ,n},and C C FZ ., beacode with A[n, 4] codewords

even
where FZ,... = {z € {0,1}"|d(0,z) = 0 (mod 2)}. We first introduce

some set.
By(z) = {ye{0,1}"]d(z,y) <t}
X = Fpy—|J Bil9);
geC
S = {(z,9)lr € X,g € C and d(z,9) = 3},
where F7,, = {0,1}" — F2,.,,. Br(z) is called the sphere with radius r
and center z. For z € X and g € C, let
C: ={(z,9)(z,9) € &}
Xg = {(w,g)l(x,g) € S}
Hence

(2) S={JC= X,

zeX geC

2. Upper bounds for Aln,4]

Without loss of generality it can be assumed that in an optimal binary
code with even minimum distance, only words of even weight occur. The
first two theorems are well-known.

THEOREM 1 (Trivial values). Let d,w,n € N with w < n. Then
An,dl = Aln+1,d+1] if dis odd,

Aln,d,w] = |n/w| if d=2uw,

Aln,d,w| =1 if 2w < d,

Aln,2,w] = ("),

A

a)
b)
c)
d)

)

e

w

[n,d,w] = A[n,d — 1,w] if d is even.
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THEOREM 2 (Johnson [7, p. 98]).
(3) Aln,d,w| < LgA[n—l,d,w—l]J , (n>w>1),

n

(4) Aln,d,w] < { Aln — l,d,w]J , (n>w>0).

n-—w

The first Johnson bound J1(n, d,w) is defined to be the smallest upper
bound on Aln,d,w] that is obtained by repeatedly applying (3) and (4)
until Theorem 1 can be used. For example

[EV_IH ifn£5 (mod 6)

i, 4,3 = [é[nilH—l ifn=5 (mod 6).
Clearly

Aln,d,w] < Ji[n,d, w].

THEOREM 3 (Kirkman [9], Schénheim [10]; see also [6, p.237]).
Aln,4,3] = Ji[n, 4,3].

THEOREM 4 (Brouwer [4]).
a) Aln,4,4] < EA[n— 1,4, 3]J if n=5 (mod 6),
b) Afn,4,4] = EA[n— 1,4, 3]J if n%5 (mod 6).

Now suppose that z € {0,1}" and g,¢' € C. Then
d(z +g,2+9¢') =d(g,q) > 4.

Hence = 4 C is also code with minimum distance 4. We note that the
unions in (2) are actually disjoint unions. Hence each {C;} or {X,} in
(2) forms a partition of S ([8]). The next two lemmas lead us directly

into the main theorem:.

LeMMA 1. Let n > 2. Then
(5) S| < (2" — nAn,4])An, 4,3].
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Proof. Let € X. From the definition of A[n,4,3] and Theorem 1
e), we obtain
ICzl = {g €Cld(z,9) =3} ={g € Cld(0,g + ) = 3}
= g€z +Cld0,9) =3} < An,4,3].
Since | X| = (27! — nA[n,4]) and |S| = > c x |Cz|, we have inequality
(5). O

LEMMA 2. Let n > 2. Then

(6) S| = Aln, 4] ((Z) —4. A4> .

Proof. Let g € C. From the definition of A4, we obtain
Xyl = HzeFd(z,g) =3}
—|{z € F"|d(z,g) = 3 and d(z,C) = 1}|

_ (’;) ~4-l{or € Cldis, 9) = 4}

- ()

151 =" 1X,| = (’;) O] — 4|C| Ay

geC
Which is the claimed result. (|

Hence we have

Comparison of (5) and (6) leads to
THEOREM 5 (Main theorem).
271 A[n, 4, 3]

(”) — 444 +nA[n, 4,3]

An,4] <
3

In [3], it is shown that for n > 1

2"/(n+1) if n=3 (mod 4)
2"/(n+2) if n=2 (mod 4)
Aln,3) < 2"/(n+3) if n=1 (mod 4)
2" /(n+4) if n=0 (mod 4)
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In paper [8], Kim and Hahn show

2"/(n +2) if n=0,2 (mod 6)
2"/(n+2+2/n) if n=4 (mod 6)
A(m3) <3 onn 41 if n=1,3 (mod 6)
2"/n+148/(n—-1) if n=5 (mod 6).

Theorem 5 is sharper than the above results for the case n = 11 (mod 12)

It is known that A[23,4] < 173784 (Best [1]; see also [5, Chapter 9]).

Theorem 3, Theorem 4, and the previous theorem yields

1]
[2]

[10]
[11]

[12]

THEOREM 6.
A[23,4] < 173716.
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