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CHARACTERIZATION OF THE HELICOID AS RULED
SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

MIEKYUNG CHOI AND YouNg Ho Kivm*

ABSTRACT. We introduce the notion of Gauss map of pointwise
1-type on ruled surfaces in the Euclidean 3-space for which vector
valued functions is neither trivial nor it extends or coincides with
the usual notion of 1-type, in general. We characterize the minimal
helicoid in terms of it and give a complete classification of the ruled
surfaces with pointwise 1-type Gauss map.

1. Introduction

In 1970’s B. Y. Chen (cf. [3, 4, 7]) defined the notion of submanifolds
of finite type in Euclidean space, for which many studies have been done
since then. He also extended this notion to general differential maps on
submanifolds in Euclidean space E™. For spaces other than E™, see [10,
11, 12]. Chen and Piccini ([5]) studied the compact submanifolds in
Euclidean space with Gauss map of finite type and especially charac-
terized the compact submanifolds with 1-type and 2-type Gauss maps
in Euclidean space. Other geometers have also studied submanifolds of
Euclidean space or pseudo-Euclidean space with finite type Gauss map
([2, 8, 13], etc.).

On the other hand, C. Baikoussis and D. E. Blair ([1]) studied ruled
surfaces in Euclidean 3-space satisfying AG = AG, where A denotes
the Laplace operator corresponding to the induced metric on M, G the
Gauss map defined on M and A is a 3 x 3— real matrix. In such a case,
the Gauss map G can be reduced to AG = AG for some X € R.

However, there may be some other ruled surfaces satisfying AG = fG
for some smooth function f. To avoid trivialities, we assume that G # ha
with h a scalar real function and @ a constant vector. In such cases, we
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must again reside in the usual 1-type notion. For example, the helicoid
is, up to a rigid motion, parameterized by

(1) x(s,t) = (tcoss,tsins,bs), b#0,
and the Gauss map G is given by
1

2 G=——=
@ Vi2 + b2
(see [14]). Therefore, we easily see that the Gauss map satisfies

2b*
—— G,
(12 +0?)

which is not of 1-type in usual sense.
Thus, the following question naturally arises : Besides the helicoid,
which other ruled surfaces in Euclidean 3-space E? satisfy

(1.1) AG = fG

for some real valued function f?7

In this paper, we give a complete answer to this question. We now
introduce the definition of pointwise 1-type Gauss map. A ruled surface
M in Euclidean 3-space E? is said to have pointwise 1-type Gauss map
if it satisfies (1.1). This notion for vector valued functions F' is neither
trivial, if F' # ha with h scalar real function and a constant vector, nor
it coincides with the usual 1-type notion, in general. Because of the
trivial cases it is not a direct extension of it, either. We study the ruled
surfaces in Euclidean 3-space E3 with pointwise 1-type Gauss map and
we characterize the helicoid in terms of it.

(—bsins,bcos s, —t)

(3) AG =

2. Preliminaries

Let M be a surface of Euclidean 3-space E3. The map G : M —
S2(1) C E3 which sends each point of M to the unit normal vector to
M at the point is called the Gauss map of a surface M, where S%(1)
denotes the unit hypersphere of E3.

For the matrix g = (gi;) of the Riemannian metric on M we denote
by g=! = (g%) (resp. G) the inverse matrix (resp. the determinant) of
the matrix (g9;;). The Laplacian A on M is, in turn, given by

0

1« 0 y
(2.1) A:——\/—'—aZE—E( 1G] g 59;;)-
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Now, we define a ruled surface M in E3. Let I be an open interval
containing 0 in the real line R. A ruled surface M is parametrized by

(2.2) z(s,t) = a(s) +t0(s), se€l, teR,

satisfying (o, ) = 0 and (8, 8) = 1. The curve a(s) is called a base curve
and ((s) a director curve. In particular, M is said to be cylindrical if
B(s) is parallel to a fixed direction in E3. It is called non-cylindrical
otherwise.

We now consider the Laplacian of Gauss map of cylindrical and non-
cylindrical ruled surfaces.

Case 1. M is cylindrical.

Suppose that the surface M is a cylinder over a plane curve a =
(a1, ag, 0). We may assume that « is parameterized by its arc length s.
Then, up to congruence, a parameterization = of M is given by

(4) (s, t) = a(s) + 6,

where (3 is a constant vector, namely 3 = (0,0, 1).
The Gauss map of M is thus given by

(5) G =d x 8,
where o/ = %‘;‘—. The Laplacian A of M is easily obtained by
32 62
6 A=——p— —.
(6) s o2

Case 2. M is not cylindrical.

A non-cylindrical ruled surface M is parametrized, up to a rigid mo-
tion, by

(7) z(s,t) = a(s) + tB(s),

where a(s) is a base curve and (3(s) is a unit vector field along the rulings
such that

(8) (,8)=0, 8,8)=1, (6,8)=L1
Then, the Gauss map G of M is given by

1 / /
= o i) < g T8) B

(2.3)
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We now define three functions ¢, and v by

(24) q=llod +tB ) =2+ 2ut+v, u={(d,8), v={d,d).
Then, the Gauss map G can be written as

(2.5) G=q 3((e/ +16) x B) =g 2(A+1B),

where we have put A = o/ x 8 and B = 8/ x 8. In this case the Laplacian
A of M can be expressed as follows (cf. [6]):

© 10 19910 19910

02 qOs2 20sq20s 20tqot’

For later use, we now compute

(2.6) A=-—

G

O = Ba— (A4 1Bt} =a7iC,
92G _5 _5
) =q 2{(Bu—A)q—3Bg—(A+tB)(t+u)(t+u)}:=q 2D,
%i‘; - %q‘%{Z(A’ +tB')g - (A+tB)(2u't + ')} == 5¢"2E,

2
‘988(2; = %q_%{[Z( A" +tB"q+ (A +tB")(2u't + )

— (A+tB)(2u"t +v"))q

- %[2@4/ +1B')g — (A +tB)(2u't + v')](2u't + ')}
1 _s

= —q_i

2
where C, D, E and F are defined by the above four formulas. Using the
formulas described above, the Laplacian AG of the Gauss map G with

help of (2.6) turns out to be

)

5 1 1
2.7) AG=-¢"iD- 5q—%F + Zq“% (2u't +')E — ¢~ 3 (¢ +u)C.

3. A characterization of ruled surfaces

In this section we are going to characterize the ruled surfaces in terms
of pointwise 1-type Gauss map, which have 1-type Gauss maps as in the
usual case.

THEOREM 3.1. The plane and the circular cylinder are the only cylin-
drical ruled surfaces with pointwise 1-type Gauss map.
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Proof. Let M be a cylindrical ruled surface in E2. The Gauss map G
of M is given by
(9) G =d x 3= (aj,~a},0),
and the Laplacian AG of the Gauss map G is derived to be AG = (—af,

nn

af’,0). Since M has pointwise 1-type Gauss map, (1.1) implies

ol'(s) = —f(s,t)d(s),
(3.1) { ol(s) = —f(s. t)ah(s)

Since « is parametrized by the arc length, (a
Therefore, we may put

(10) o} (s) = cosf(s), ah(s)=sinb(s)
for some function 8 of s. Putting these into (3.1), we have

(11) { (f(s,t) — (6'(5))?) cos B(s) — 0"(s)sinf(s) = 0,
(f(s,t) — (8'(s))?) sin(s) + 6"(s) cos (s) = 0,

from which, we obtain

(12) 6"(s) =0, f(s,)=(0'(s))*

—_
~—~
V]
~—~—
~—

[
+
—_
L
o~
~~

w
~—
~—
[ M
[
—_

Therefore, f is a constant. Thus, we conclude that M is an open portion
of the plane and the circular cylinder according to Lemma of [1]. O

THEOREM 3.2. Let M be a non-cylindrical ruled surface in E3. Then,
M is an open portion of the helicoid if and only if the Gauss map is of
pointwise 1-type.

Proof. Suppose that M is a non-cylindrical ruled surface with point-
wise 1-type Gauss map. Then, the tangential component of AG van-
ishes, that is,

(3.2) AG - (AG,G)G = 0.

The straightforward computation of the left hand side of (3.2) gives a
polynomial in ¢ with functions of s as the coefficients (by arranging the
powers in the function g, see (2.4)) and thus they must be zero. So, we
obtain

(3.3) B" —(B",B)B =0,
A" +(1—(B",B))A+ 4uB" — 3./'B'

(12) — (u+ (A" BY + (A, B") + 2u(B", B)B =0,



758 Miekyung Choi and Young Ho Kim

SuAd” — 6u'A’ + 2(4u — (A", B) — (A, B") — 2u{B",B))A
+4(2u® 4+ v)B" — 3(4u’ + "\ B’
— 2(3u? — 3u? + (4", A) + 2u(A”, B) + 2u(A, B")
+v(B",B) +v)B =0,

(3.5)

(3.6)
4(2u? 4+ v) A" — 3(dur’ + ')A

+ 2(5u% + v + 3u? — (4", A) — 2u(A", B) - 2u{A, B") —v(B", B))A
+ 8uvB" — 6(u'v + w')B’
— 2(2u® + duv — 3u'v' + 2u(A”, A) + v(A", B) + v(A,B"))B =0,
(12)
16uvA” — 12(u/v + w') A
+ 4(2uv + 3u'v' — 2u(A”, A) — v(A”, B) — v(A, B") + 2u%)A
+ 40?B" — 6vv' B’ — (12u%v — 30" + 4v(A", A) + 40?)B = 0,

(3.8)  402A" — 6vv' A + (3v? — 4v(A", A) + 4uv) A — 4w’ B = 0.

From (3.3), the definition of B and the property of 8 we have (B”, B") =
0, and so, (B’, B') = ¢ for some constant c¢. This implies that (B”, B) =
—c. Therefore, (3.3) gives

(3.9) B" = —¢B.
It follows that (A, B”) = —cu since
(A,B) = (o/ x B, x B) = (¢, f') = u.
Consequently, the equations (3.4)-(3.8) becorae as follows:
(3.10) A"+ (1+c)A-3uB —(cu+u+ (A", B))B =0,
(12)
SuA” — 6u' A’ + 2(4u — (A", B) + 3cu)A — 3(4uv’ + ') B’
—2(3u® — 3u? + (A", A) + 2u(A", B) + 2cu® + cv + v)B = 0,
(12)
4(2u® + v) A" — 3(duu’ + ") A’
+2(5u? + v + 3u” — (A", A) — 2u(A”, B) + 2cu® + cv) A
—6(u'v +w')B’
—2(2u3 + 4uv — 3u'v + 2u(A”, A) + v(A”, B) + 3cuv)B = 0,
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(12)
16uvA” — 12(u'v + wv') A’
+ 4(2uv + 3u'v' — 2u(A”, A) — v(A", B) + cuv + 2u3)A
— 6vv' B’ — (12u%v — 302 + 4w(A”, A) + 4% + 4cv?)B = 0,

(3.14)  40?A" — 60V’ A + (302 — 40(A", A) + 4*v)A — 4uv?B = 0.
Using the above equations, we can eliminate A”, A’ and B’ so that

(3.15) { (2uv? — 4u'vv) A + (4uv? — vv)B =0,

' (—4u"?v + v) A + (8un?v — d4u'vv')B = 0.
First, we suppose that A and B are linearly dependent at some s € I.
Then, there is a constant A; such that A(s) = A1 B(s), that is &/ x =
MG x 6. ‘
Thus, we have o/ ~ \13 = A2 for some constant \o. Since (¢/, 3) =0,
we have Ay = 0 and thus o/ = A\;3'. By the definition of u and v, we get

(13) u={(,8)=(MB,0)=X\,

(14) v = (a’,a’) = <>\15’,>\1ﬁ,> = )\12.

So we have u? = v. This contradicts the property of the smooth positive

function ¢in (2.4). Thus, A and B are linearly independent for all s.
Thereby, from (3.15), we obtain the following equations:

(3.16) w'? — 2u'v =0,
(3.17) v = 4/,
(3.18) 2uu?v — vy’ = 0.

If v’ # 0, we obtain v/ = 2uu’ by virtue of (3.18). In this case, we get
u? = v from (3.17). This is also a contradiction. Thus, we have

(3.19) W = 0.
This together with (3.17) yields
(3.20) v =0.

On the other hand, (3.9) implies
(3.21) B"xB+8"xB +c8 xB=0.
Taking the inner product with 8 in (3.21), we obtain
(15) (8" x 8,8) =0.
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Since in this case 8 # 0, 8’ # 0, 8" # 0, there are smooth functions p;
and pg such that

(16) B=mB" +up.

Since (', 3) = 0, we have us = 0 and so 3 =: 38" (and p; # 0). But,
by the definition we have v and v that

(17) u' = (", B+ (o], 8"), v =2(",d).

Since (o/,8) = 0 and 8 = p108”, we have v/ = (a’,5’). Consequently,
(3.19) and (3.20) yield

(3.22) (", p)Y=0, (",d)=0.
For the vector fields o/, 3, 8’ and o’ we may put
(18) o’ =k + k‘Qﬂ/ + k=03,

where ki, ks and k3 are some smooth functions. The last equation to-
gether with (3.22) gives k1 = 0 and ke = 0, in other words, " and (3
are parallel.

On the other hand, by definition the mean curvature vector field H
of M is easily obtained as follows :

(19) H= %q"%((a' +t8) x B,a" +t3").

Since 3”,a” and 8 are parallel to each other, it is easily proved that
H vanishes identically. Thus, M is an open part of the helicoid (The
helicoid is the only minimal ruled surfaces, except for the plane, see [9],
p. 204). The converse is obvious and this corapletes the proof. 1

Combining the results of Theorem 3.1 and 3.2, we have the following

THEOREM 3.3. (Classification) The ruled surfaces in E3 with point-
wise 1-type Gauss map are the open portions of the plane, the circular
cylinder and the minimal helicoid.
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