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DERIVATIONS ON PRIME RINGS
AND BANACH ALGEBRAS

Kit-Woune JunN AND HARK-MAHN KIM

ABSTRACT. In this paper we show that if D and G are contin-
uous linear Jordan derivations on a Banach algebra A satisfying
[D(z), z]x — 5[G(x), z] € rad(A) for all z € A, then both D and G
map A into rad(A).

1. Introduction

Throughout this paper R will represent an associative ring with center
Z and A will represent an associative algebra over a complex field C.
The (Jacobson) radical of A is the intersection of all primitive ideals of
A and will be denoted by rad(A). Z will represent the set of all integers
and Z* will represent the set of all positive integers. A ring R is said
to be n-torsion free if nz = 0, ¢ € R implies x = 0. The commutator
zy — yx will be denoted by [z, y], and we make extensive use of the basic
identities [zy, 2] = [z, 2]y + z[y, 2], [z, yz] = [z,y]2 + y[z, z]. Recall that
a ring R is prime if aRb = {0} implies that either a = 0 or b = 0, and
is semiprime if aRa = {0} implies that a = 0. An additive mapping D
from R to R is called a derivation if D(zy) = D(x)y + zD(y) holds for
all z,y € R. A derivation D is inner if there exists ¢ € R such that
D(z) = [a,z] holds for all z € R. An additive mapping D from R to
R is called a Jordan derivation if D(z?) = D(z)z + zD(z) is fulfilled
for all x € R. A mapping F from R to R is said to be commuting on
R if [F(z),z] = 0 holds for all x € R, and is said to be centralizing
on R if [F(z),z] € Z holds for all z € R. Obviously, every derivation
is a Jordan derivation. The converse is in general not true. BreSar
showed that every Jordan derivation on a 2-torsion free semiprime ring
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is a derivation [1]. There has been considerable interest in commuting,
centralizing, and related mappings in prime and semiprime rings. K.
W. Jun and B. D. Kim [7] have obtained the algebraic condition that
every derivation on a Banach algebra maps into its radical. In this paper
we shall give the various algebraic conditions on prime ring that every
derivation on the ring is zero and using these results, we show that every
continuous linear Jordan derivation with sorae conditions on a Banach
algebra maps into its radical.

2. Main results

We list a few more or less well-known results which will be needed in
the sequel.

REMARK. R will represent a prime ring with center Z and extended

centroid C.

1. Let ¢ and ac be in the center of R. If ¢ is not zero, then a is in the
center of R.

2. If a derivation D of a prime ring R maps a nonzero left ideal of R
into the center of R, then either D = 0 or R is commutative.

3. Suppose that the elements a;,b; in the central closure of R satisfy
Ya;yb; = 0. If b; # 0 for some 7 then the ¢;’s are C-dependent.

4. The elements a,b in the central closure of R are C-dependent if and
only if ayb = bya holds for all y € R.

The explanation of the notions of the extended centroid and the cen-
tral closure of a prime ring, as well as the proof of Remark 3, can be
found in [5, pp. 20-31].

E. Posner [9] proved that the existence of a nonzero centralizing
derivation on a prime ring forces the ring to be commutative. We are
going to generalize the Posner’s theorem as follows. The following result
is motivated by Bresar’s result [2, Theorem 4.1].

THEOREM 2.1. Let R be a noncommutative prime ring. Suppose
that D and G are derivations of R such that D(z)x — zG(z) € Z for all
x€R. Then D=G=0onR. ‘

Proof. A linearization of D(z)x — zG(z) € Z gives

(2.1) D(z)y + D(y)r — zG(y) —yG(z) € Z for all z,y € R.
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First assume that there exists a nonzero ¢ € Z. Taking y = ¢ in (2.1)
we get

(22)  ¢oD(z) - G(z)) + D(e)z — 2G(c) € Z forall z € R.
Now let y = ¢? in (2.1). Then we obtain
A(D(z) — G(z)) + 2¢D(c)x — 2caG(c) € Z.
That is, |
o(D(e)z — 2G(c)) + c(c(D(z) — G(z)) + D(c)z — 2G(c)) € Z

for all z € R. Noting that the second summand is contained in Z by (2.2),
we obtain ¢(D(c)xz — 2G(c)) € Z for every z € R, hence by Remark 1,
D(c)z — zG(c) € Z. Thus (2.2) becomes ¢(D(z) — G(z)) € Z for all
z € R, and so, by Remark 1, D(z) — G(z) € Z for every z € R. In
view of Remark 2 we are forced to conclude that D = G. Thus in case
Z # 0, we have [D(z),z] € Z by assumption, so D = 0 by the Posner’s
Theorem. Consequently, we arrive at D = 0 = G. In case Z = 0, by
assumption, we get

(2.3) D(z)x —2G(z) =0 forall z € R.

Linearizing this relation, we obtain

(2.4) D(z)y + D(y)x = zG(y) + yG(z) for all z,y € R.
Replace in (2.4) y by yz. The relation which we obtain can be written
in the form (D(z)y + D(y)x — 2G(y))z + y(D(z)x — 2G(z)) = zyG(z),
hence it follows from (2.3) and (2.4) that :

(2.5)  yG(z)z = zyG(x), ie., [yG(z),z]=0  forall z,y € R.
Replacing y by 2y in (2.5), we then get [z, z]yG(z) =0 for all z,y,z €
R. Since R is prime, for every x € R we have either z € Z or G(z) = 0.
Using the fact that a group can not be the union of two proper subgroups,

it follows that G = 0, since R is noncommutative. So (2.3) reduces to

(2.6) D(z)x=0 for all z € R.
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Linearizing (2.6), we get
(2.7) D(z)y+ D(y)x =0  forall z,y € R.

Replace y by D(z)y to get 0 = D(z)%y + D?(z)yz + D(z)D(y)z =
D?*(z)yx by (2.7). Using primeness of R, it follows that D?(z) = 0 for
all z € R. So D = 0 by the Posner’s first theorem [9]. The proof of the
theorem is complete. O

By the above theorem, we obtain Posner’s second theorem as a corol-
lary.

COROLLARY 2.2. Let R be a prime ring. If D is a nonzero derivation
of R which is centralizing on R, then R is commutative.

COROLLARY 2.3. Let R be a noncommutative prime ring. Suppose
there exist a,b € R and a derivation D of R such that the mapping
x — D(z) + az + xb is centralizing on R. Then D is an inner derivation
given by D(z) = [z,a] = [b, z].

Proof. Observe that the relation [D(z) + az + xb,z] € Z can be
written in the form (D(z) — [z,a])z — z(D(z) — [b,z]) € Z. O

Taking a derivation D in Corollary 2.3 to be zero, we get

COROLLARY 2.4. Let R be a prime ring. If a,b € R are such that
the mapping © — ax + zb (called a generalized inner derivation) is
centralizing on R, then a,b € Z.

We give the well-known results which will be needed in the rest of
this paper. The following lemma is due to L. O. Chung and J. Luh [4].

LEMMA 2.5 [4, Lemma 1]. Let R be a m!-torsion free ring. Suppose
that t1,ts, - ,tm € R satisfy kty + k?ta + -+ + k™t,, = 0 for k =
1,2,--- ,m. Then t; = 0 for all 1.

LEMMA 2.6 [8]. Let R be a noncommutative prime ring of (n + 1)!-
torsion free and D : R — R a Jordan derivaticn such that [D(z), z]z™
0 or z"[D(z),z] =0 for all t € R. Then D = 0.

THEOREM 2.7. Let R be a noncommutative prime ring of 6!-tor~ion
free. Suppose that there exists a Jordan derivation D : R — R ~nch
that z[D(z),z]x = 0 holds for all x € R. Then we have D =0 on /..
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Proof. Bresar showed that every Jordan derivation on a 2-torsion free
semiprime ring is a derivation [1]. Thus D is a derivation. We introduce
a symmetric biadditive mapping F' : Rx R — R by the relation F(z,y) =
[D(z),y] + [D(y),x] for all 2,y € R. A routine calculation shows that
the relation F(zy,z) = F(z,2)y + zF(y,z) + D(z)[y, 2] + [z, 2]D(y)
is fulfilled for all z,y,z € R. Let us write f(z) for F(z,z). Thus
f(z) = 2[D(z),z] for all z € R. The mappings f satisfies the relation
flz+Xy) = f(z) + A2 f(y) + 2A\F(z,y) for all z,y € R and )\ € Z. Now
the assumption of the theorem can be written in the form

(2.8) zf(x)r =0, z€R.
Replacing = by z + Ay in (2.8), we get

0 =A(zf(z)y + 22F(z,9)z + yf (z)z) + N (22 F (2, y)y + yf (z)y

+af(y)z + 2yF (z,9)z) + X (2f ()y + 29 F (z,9)y + yf (v)e)

for all z,y € R, A.€ Z. Applying Lemma 2.5, we have
(2.9) 0==zf(x)y+2zF(z,y)x +yf(z)z, z,ye€R.
Let us replace in (2.9) y by yz. Then, by (2.8) and (2.9), we get
(2.10) 0 =zf(z)yz + 22F(z,y)2? + 2zyf(z)z + 2z[y, x| D(z)z
= - yf(2)a® + 22y f(2)z + 22[y, 2] D(z)x

for all z,y € R. The substitution yz for y in the above relation leads to
0 = z[y, x|z D(z)z, which can be written in the form

(2.11) zyz’D(z)z = z’yzD(x)z, z, y € R.
Putting in (2.10) y = D(z)zy, we obtain
(2.12) xD(x)zyr*D(z)z = x> D(z)zyzD(z)z, z, y € R.

If zD(z)z # 0, then it follows from (2.12) and Remark 4 that z2D(z)z =
azxD(z)x for some o € C. Applying the last relation to (2.11), we get
0 = (az — 2%)yzD(x)z, y € R, which yields z? = az since R is prime.
Since R is of characteristic not two, we can rewrite (2.10) as follows.

0 = zy(2D(z)z? — zD(z)z) — %y D(z)x

(2.13) + y(zD(z)z? — D(z)z?), y € R.



714 Kil-Woung Jun and Hark-Mahn Kim

We set conveniently

a = 2D(z)z*~xD(z)z,b = D(z)z,c = zD(z)z*~D(z)x®,a; = 2*,i = 1,2
Thus we have by (2.13)

(2.14) 0 = a1ya + axyb + ye, y € R.

Substituting za;y for y in (2.14), we obtain 0 = a;za1ya + agza,yb +
zayyc for all y,z € R. But on the other hand we see from (2.14) that
a1za1ya = —a1za:yb — ayzyc. Comparing the last two relations, we
arrive at 0 = (agza; — a12a2)yb + (2a1 — a12)yc for all y, z € R, which
gives

(2.15) 0=(za; —a12)yc, vy,z€ R,

since a,ay are C-dependent. Now it follows from (2.15) that we have
either a; = z € Z or ¢ = —[D(z),z]a®> = 0 by primeness of R. Of
course, in both cases [D(z),z|z? = 0. We have theérefore proved that
[D(z),z]z® = 0 in case xD(x)x # 0. So R is the union of its subsets
P={ze€ R:zD(z)x =0} and Q = {z € R: [D(x),z]z? = 0}. Suppose
D # 0. The well known results [3] and Lerama 2.6 then tell us that
P # R and Q # R. Thus there exist z,y¥ € R such that x ¢ @ and
y ¢ P, hence z € P and y € Q. If we consider = + Ay, A € Z, then we
see that either x + Ay € P or x + Ay € @. If this element lies in P, then
we have

MzD(z)y + zD(y)x + yD(z)z} + \2{zD(y)y

(2.16) s
+yD(z)y +yD(y)z} + A°yD(yly = 0.

If it lies in @), then
(2.17)
[D(z), 2]z’

+M[D(), z](zy + yz) + ([D(=), 9] + [D(y), 2]z}
+2{[D(x), z]y* + ([D(x), ] + [D(y), 2])(zy + yz) + [D(y), ylz*}
+A{([D(=), 4] + [D(y), 2])y* + [D(y), y)(y + yz)} = 0.

Thus, for every A € Z, one of these two possibilities holds. But either

(2.16) has more than three solutions or (2.17) has more than four so-
lutions. In view of Lemma 2.5, this contradicts the choice of x and y



Derivations on prime rings and Banach algebras 715

such that yD(y)y # 0 and [D(z), z]z? # 0. The proof of the theorem is
complete. 0

Bresar [1] showed that every Jordan derivation on a 2-torsion free
semiprime ring is a derivation. In recent paper [11] Vukman has proved
that in case there exists a nonzero derivation D : R — R, where R
is a prime ring of characteristic different from 2 and 3, such that the
mapping z +— [D(z), ] is centralizing on R, R is commutative. We are
going to generalize this theorem mentioned above as follows.

THEOREM 2.8. Let R be a noncommutative prime ring of 6!-torsion
free. Suppose that D and G are Jordan derivations of R such that
[D(z),zlz — z[G(z),z] € Z for all zx € R. Then we have D =0 = G on
R.

Proof. By the Bresar’ result [1] D, G are derivations. We use the
notations f, F' in Theorem 2.7 and h, H similarly, defined by H(z,y) =
[G(z),y] + [G(y),x], h(x) = H(z,z), respectively. The assumption of
the theorem can now be written in the form

(2.18) f(z)x —zh(x) € Z forall z € R.

First assume there exists a nonzero ¢ € Z. The linearization of (2.18)
gives
f(@)y +2F(z,y)x + 2F(z,y)y + f(y)z — 2zH(z,y)

(2.19) —zh(y) — 2yH (z,y) —yh(z) € Z

for all z,y € R. The substitution —z for z in the above relation leads to

f(@)y +2F (z,y)x — 2F (z,y)y — f(y)r — 2zH(z,y)

(220) + zh(y) + 2yH(z,y) —yh(zx) € Z

for all 2,y € R. Now from (2.19) and (2.20) we obtain f(z)y+2F(z,y)z—
yh(z) — 2zH(z,y) € Z, which can be written in the form

[D(z), zly + [D(z,y]z + [D(y), 7]z

(2.21) —y[G(2), 7] — 2[G(x),y] — z[G(y),z) € Z

for all z,y € R. Taking y = ¢ in (2.21), we get
222)  (D@),9] - [G(a),a])e + [D(e), ol — 2[G(e), 7] € Z
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for all z € R. Now let y = ¢? in (2.21), then we obtain
(ID(x),z] ~ [G(z), z])c® + 2[eD(c), z]z — 2z[cG(c),z] € Z

for all z € R. That is, the above relation can now be rewritten in the
form

{([D(2), 2] — [G(z), z])c + [D(c), zlx — z[G(c), z]}
+ c([D(c), 2|z — z[G(c),z]) € Z
for all z € R. Noting that the first summand is contained in Z by
(2.22), we obtain c([D(c),z]z — z[G(c),z]) € Z for every z € R, and
hence by Remark 1 [D(c),z]x — z[G(c),z] ¢ Z. Thus (2.22) becomes
([D(z),z] — [G(z),z])c € Z for all z € R. And so, by Remark 1,
[D(z),z] — [G(z),z] € Z for all z € R. In view of [9, Theorem 2],

we are forced to conclude that D — G = 0.
In case Z = 0, by our assumption, we get

(2.23) [D(z),z]z — z[G(z),z] =0 for all z € R.

Linearizing (2.23), we obtain

(2.24) f(z)y+2B(z,y)xz — yh(x) — 2zH(z,y) =0 forall z,y € R.
Replacing in (2.24) y by z2, we obtain the relation’ by (2.23)

0 =f(z)x® + 2B(z,2%)z — 2?h(z) — 2¢0H (z, z%)
=f(z)2? + 2(f(x)z + zf(z))x — 2°h(z) — 2x(h(z)z + zh(z))
=3f(x)z? + 2z f(x)x — 322h(z) — 2zh(z)z
=f(z)a? - zf(z)z
=[f(z),z]z for all z € R.

Observe that the relation 0 = f(z)x —zh(z) = [f(z), z]| + z(f(z) — h(z))
holds for all z € R. Right multiplication of this relation by z leads to

(2.25) 0 =z[D(z) — G(z),z]z for all z € R.

Applying Theorem 2.7 to the relation (2.25), we have D — G = 0.
Therefore in any case D = G and the assumption can be written by
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[[D(z),z],z] € Z, so D = 0 by the Vukman’s theorem [11]. Conse-
quently we arrive at D = 0 = G. The proof of the theorem is complete.(J

Neglecting the fact that in our result we have an additional assump-
tion concerning the torsion of the ring, we can say that the above theo-
rem generalizes the Vukman’s theorem.

COROLLARY 2.9. Let R be a prime ring of 6!-torsion free. If D is a
nonzero derivation of R such that [[D(z),z],z| € Z for all x € R, then
R is commutative.

By virtue of Theorem 2.8, we can characterize a derivation with some
specific property.

COROLLARY 2.10. Let R be a noncommutative prime ring of 6!-
torsion free. Suppose there exist a,b € R and a derivation D of R such
that the mapping = — [D(x), x| + [a, 2]z + z[b, ] is centralizing on R.
Then D is an inner derivation given by D(z) = [z, a] = [b, z].

Proof. Observe that the relation [[D(z),z]| + [a,z]z + z[b,z],z] € Z
can be written in the form ([D(z)—[z, a], z|)z—2([D(x)—[b, z}, z]) € 2.0

Taking a derivation D in Corollary 2.10 to be zero, we get

COROLLARY 2.11. Let R be a prime ring of 6!-torsion free. If a,b € R
are such that the mapping = + [a, z]z +x[b, 2] is centralizing on R, then
a,be 7.

Using the above algebraic results, we show that every continuous
linear Jordan derivation on a Banach algebra maps into its radical.

THEOREM 2.12. Let A be a Banach algebra, and let D and G be
continuous linear Jordan derivations on A. If [D(x),z]z — z|G(z),z] €
rad(A) for all z € A, then both D and G map A into rad(A).

Proof. Let P be a primitive ideal of A. Since D and G are continuous,
by [10, Lemma 3.2] we have D(P) C P and G(P) C P. Then we can
define Jordan derivations Dp and Gp on A/P by

Dp(3)=D(z)+ P, Gp(2) =G(z)+ P, =2+ P

for all x € A. The factor algebra A/P is prime and semisimple, since
P is a primitive ideal. Thus both Dp and Gp are derivations by the
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Bresar’s result [1]. Johnson [6] has proved that every derivation on a
semisimple Banach algebra is continuous. Combining this result with the
Singer-Wermer theorem, we obtain that there are no nonzero derivations
on a commutative semisimple Banach algebra. Hence in case A/P is
commutative, we have Dp = 0 and Gp = 0. It remains to show that
Dp = 0 and Gp = 0 in the case when A/P is noncommutative. The
assumption of the theorem gives [Dp(%), ] — £[Gp(2),2) = 0, & €
A/P. All the assumption of Theorem 2.8 is fulfilled. Thus we have both
Dp =0 and Gp = 0. In any case Dp = 0 and Gp = 0. Hence we see
that D(A) C P and G(A) C P. Since P is any primitive ideal, the result
follows. This completes the proof. a

The following corollary is the special case of Theorem 2.12.

COROLLARY 2.13. Let A be a Banach algebra, and let D be a con-
tinuous linear Jordan derivation on A. If [[D(z),x],x] € rad(A) for all
x € A, then D maps A into rad(A).
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