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PROJECTIVE SYSTEMS WHOSE SUPPORTS CONSIST
OF THE UNION OF THREE LINEAR SUBSPACES

TAKAO KATO* AND MIYAKO YAMADA

ABSTRACT. We discuss the class of projective systems whose sup-
ports are the complement of the union of three linear subspaces in
general position. We proves these codes are uniquely determined
up to equivalence by their weight enumerators. Our result is a
generalization of the result given in [1].

1. Introduction

Let I, be the finite field with ¢ elements. Let C' C Fy be a nondegen-

erate linear g-ary [n, k, d]-code with a generator matrix G = (ay, ..., a,),
where a; is a column vector of length k. Since C is nondegenerate, a; # 0
for any i = 1,...,n, whence we can associate a; with the point [a;] in

the k£ — 1 dimensional projective space P¥~! over F,. Then, G induces
a positive O-cycle Y7 [a;] on P*~!  whose support spans the whole
space. Let G’ = (af,...,a],) be another generator matrix of C. Then,
O-cycles Y i ;[as] and Y"1 ,[a;] are projectively equivalent. By defini-
tion, a projective system X associated with C is a representative of
this equivalence class [2].

Conversely, a positive O-cycle of length n in P*~! whose support spans
the whole space determines a nondegenerate [n, k|g-code.

Let S be a subset of P*~! which spans the whole space. Then, the
0-cycle Y pcg P induces a nondegenerate code C. Recently, Homma-
Kim-Yoo [1] computed the weight enumerator W¢(z) of C, in the case
S ( or S¢) is a union of linear subspaces £; (i = 1,...,7) of P*~1 in
general position.

Received December 20, 2000.

2000 Mathematics Subject Classification: 94B05, 51E20, 05B25.

Key words and phrases: linear code, weight enumerator, projective system.

*Partially supported by Grant-in-Aid for Scientific Research, Ministry of Educa-
tion, #12640180.



690 Takao Kato and Miyako Yamada

In case 7 = 2, they also prove the converse, namely, if Wg(2) =
Wei(z), then C’ is equivalent to C.
In this paper, we shall prove the converse in case r = 3.

2. Known facts

In this section, we shall give several known facts concerning weight
enumerator of codes corresponding to the projective systems and Homma
Kim-Yoo’s result.

LEMMA 2.1. Let S be a subset of P*~! such that dim(S) = dim(S°) =
k—1. Let X1 = > pcgP and X = Y p g P and let C; be the code
induced by X;, i1 =1,2. Then

We,(2) =1+ (WC1 (%) - 1) 27

Thus studying W, (2) is the same as studying W, (z). In case S is
the complement of the union of linear subspaces, Homma-Kim-Yoo give
the following;

THEOREM 2.2 (Homma-Kim-Yoo [1]). Let L, i = 1,...,7 (r > 2),
be linear subspaces of dimension s; in P*~1 in general position, where
l=r+3"_ 18 <k Let S =PF-1\|J_, £; and C be the code induced
by the O-cycle X = ) p g P. Then

w1 (s (2) 1)

r

f(z) — H (1+ (qSi+1 — 1) ZqSi) )

i=1

where

They [1] also prove the converse of Theorem 2.2 in the following
manner:

THEOREM 2.3 (Homma-Kim-Yoo {1]). Let C be the code in Theorem
2.2 for r = 2 and some s1, so. If C' is a code such that Wer(z2) = We(2),
then C' is equivalent to C.
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To prove this theorem they proves the following two lemmas:

LEMMA 2.4 (Homma-Kim-Yoo [1]). Let C and C’ be nondegenerate
codes with the same weight enumerators. Then, Xc = }_ pesupp(xo) F

To state the next lemma, we introduce a notation

qm+1 -1

N(m): =qm+qm-—1+'“+1,

qg—1

which is the number of points in P™.

LEMMA 2.5 (Homma-Kim-Yoo [1]). Let n, s, t be non-negative inte-
gers satisfying n = s +t+ 1. Let S be a set of points in P" such that
#8 = N(s)+ N(t). Let H'.’s be the sets of hyperplanes in P" as follows:

H, = {HeP™#(HNS)=N(s—1)+N@®)},
H, = {HcP™#HNS)=N(s)+Nt-1)},
' = {HeP™#(HNS)=N(s—1)+N(t—-1)}.
Assume #H., = N(s), #H, = N(t) and P = H, U H}, UH,,. Then,
there are subspaces L1, Ly in P™ such that dim £, = s, dim £y = ¢,
LiNLo=¢and S =Ly ULy

3. Uniqueness theorem for » = 3

- In this section, we shall prove the converse of Theorem 2.2 in case
r=3.

THEOREM 3.1. Let C be the code in Theorem 2.2 for r = 3 and
some s, sz, s3. Further, assume q > 5. If C' is a code such that
Wei(2) = We(z), then C' is equivalant to C.

Using the same argument as in the proof of Theorem 2.2 (cf. [1}), we
can prove this theorem if we can prove, Theorem 3.2 below:
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THEOREM 3.2. Assume that ¢ > 5. Let n, s, t, u be non-negative
integers satisfyingn = s+t+u-+ 2. Let S be a set of points in P™ such
that #S = N(s) + N(t) + N(u). Let H.’s be the sets of hyperplanes in
P" as follows:

Hy = {HeP™#(HNS)=N(s—1)+N(t)+N(u)},

( )

H, = {HeP™#HNS)=N(s)+N{t—1)+ N(u)},
H, = {HeP™|#(HNS)=N(s)+N{t)+N(u—1)},
Hy = {HeP™#HNS)=N(s—1)-+N{t—1)+N(u)},
Mo = {HEP™#(HNS)=N(s—1)+N(t)+Nu-1)}
He = {HeP™#HNS)=N(s)+Nt—1)+N(u-1)},

How = {HeP™#HNS)=N(s—1)+N({t—1)+N(u—1)}
Assume #H, = N(s), #H; = N(t), #H, = N(u), #Hgy = N(n — u —
1)=N(s)=N(t), #He, = N(n—t—=1)=N(s) = N(u), "Hyp, = N(n—s—
1) = N(t)— N(u) and P™ = HsUH;UHy UH s UH g, UHpy UHspo,. Then,

there are subspaces L1, Lo, L3 in P™ such that £y, Lo, L3 are mutually
disjoint, dim L1 = s, dim Ly =t, dim L3 =u and S = L; U Lo U L3.

REMARK. In case at least two of s, t, u coincide, the corresponding
H.'s coincide. For example, if s =t # u, then Hy = H; and Hyy = Hey.
In this case, one should read the assumption “or #H.'s as #H, = 2N(s)
and #Hz, = 2(N(n —s— 1) — N(s) — N(u)). One should also read the
assumption in a similar manner for other cases.

To prove this theorem, we need several lemmas. To describe these
lemmas and their proofs, we introduce a notation. For a linear subspace
(or a point ) £ in P, let £ be the set of hyperplanes which contain L.
Evidently, dim£ =n — 1 — dim L.

LEMMA 3.3. Let S be a subset of P* such that #*(H N S) > N(s —
1)+ N(t — 1) + N(u — 1) for every hyperplane H. Let L be a line
in P*. Assume there is a point P in L which is not contained in S.
Then #(L N S) > 3. Furthermore, equality occurs only if #(H N S) =
N(s— 1)+ N(t—1)+ N(u — 1) for every H < P\ L.

The proof is just the same procedure as in the proof of Theorem 3.1,
Claim 1 in [1]. Thus, we omit it.



Projective systems 693

LEMMA 3.4. Let S be as in Lemma 3.3. Let M be a plane in P™ and L
be a line which is contained in M. Let « = #(LNS) and 8 = #(MNS).
Then 8 > aq + 3.

In particular, if L is not contained in S, then 8 > 3q + 3 and if there
exists H € L\ M so that *(HNS) > N(s —1) + N(t —1) + N(u — 1),
then 3 > 3q + 2.

Proof. Since #(L\ M) = N(n—-2) — N(n—3) = ¢"~2, we have
(1) > FHNS)>¢"E(N(s—1)+N(t-1)+Nu-1)).
Hel\M
On the other hand, we have
#HNS) = #HNES\M)+* (HNSNL)
= #(HNES\M)) +a

for every H € L\ M.
For any point Q € S\ M, we have

#HeL\M|QeH} = #(LnQ)-*(MnQ)
= N(n-3)—N(n-4)
= q
Thus,
@ Y, FHNS) = FHS\ M) +a#(L\ M)
Hel\M
= (N(&)+N®+N@w) - B)q" " +ag" "
By (1) and (2), we have 8 < aq+ 3. If there exists H € L\ M so that

#(HNS) > N(s—1)+ N(t—1) + N(u— 1), then equality does not hold
in (1), whence we have 8 < ag + 3. This completes the proof. |

Henceforth, we assume ¢ > 5.

LEMMA 3.5. Let S be a subset of P" and let H be a hyperplane in P"
such that #(HNS) > N(s—1)+ N(t—1)+ N(u—1) and #(H°NS) > 3.
Assume M is a plane which contains at least 3 points in H° N S and
M = (MnNH®NS). Then, either

i) M is contained in S

or
ii) There exist a line Ly and a point Py such that M N S N H¢ =
(LoN H®) U {FRo}.
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Proof. Assume M is not contained in S. Let L= MNH, M’ = M\L
and So=M'NS.

Case 1. Assume L C S. Since #Sy > 3, we have #(M N S) =
#So 4+ #(LNS) > g+ 4. By the assumption, there exists a line L
in M which is not contained in S. Hence, by Lemma 3.4, we have
#(M N S) <3qg+3. Thus #Sp < 2¢ + 2.

By Lemma 3.4, there is no line L; in M such that #(L; N S) = 1.
Hence, #(L' N Sy) > 1 for every line L' in M.

Subcase 1-1. Assume there exists a line Ly in M which is contained
in M NS and is different from L. Since every line in M passing through
the point Ly N L contains at least one point in Sy. Hence,

(3) FMNS > #Li+ #L -1+ (¢—1) =3q.
If there would exist a line Ly in M such that #L, NS = 2, then by
Lemma 3.4, we had #(M N S) < 2¢ +3 < 3¢. This is a contradiction.

Hence, every line in M passing through L; N L contains at least two
points in Sp. Thus, we have
FMNS > #Ly+ #L—-1+2(q—1)=4¢g—1> 3¢+ 3.

This contradicts Lemma 3.4.

Subcase 1-2. Assume every line Li(3# L) in M is not contained in S.
Since Ly N L € S, by Lemma 3.3, we have #(L; N Sy) = 1 or 2. Put
v = #8;. For a point Q in Sy, every line passing through @ contains
at most one point in Sp \ {@}. Since there are exactly ¢ + 1 such lines,
we have v < ¢ + 2. For a point P € L, every line passing through P

contains at least one point in Sy. Hence, v > gq.
On the other hand,

-1
4) #{L1| line in M such that #(L; N Sp) = 2} = Lﬁg——%
(5) #{Ly| line in M such that #(Ly N Sp) = 1} = y(g+ 1 — (v — 1)).
Since there is no line which does not meet Sy, we have

vy -1
i——l+7@+2—w = ¢°+g¢

2
= #{linesin M different from L}.

However, we do not have an integral solution 7 of this equality.

Case 2. Assume L is not contained in S. By Lemma 3.3, we have
a =% (LNS) <3 Let Pbeapointin L\ S. Since H € P, by the
latter part of Lemma 3.3, we have #(L; N Sy) < 2 for every line L; in
M passing through P. Hence, we have 3 =% (M N S) < 2q + a.
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If B < 29 + @, then there is a line L; in M such that #(L; N S) <1
Hence, we have 8 < ¢+ 3 by Lemma 3.4.

Subcase 2-1. Assume 8 = 2¢ + a. There exist a line L; in M such
that #(L; N Sp) > 3, otherwise by the same argument as in Subcase 1-2,
we have v = 8 — o < ¢ + 2 which is a contradiction. Since H € P, for
P, =Ly N L, by Lemma 3.3 we have Ly C S and #(Sp \ L1) = q.

Assume these ¢ points lie on a line Ly. Then, there is a line L3 passing
through P; such that #(L3 N S) = 1. Hence, by Lemma 3.4 we have
B < ¢+ 3 which is a contradiction.

Therefore, there are points 1, @2 in S \ L1 such that the line Lo
containing @1, Q2 does not pass through P,. Hence, LyNL, € Sy. Thus,
by Lemma 3.3, Lo is contained in S. Since #(Sy N (L1 U Ly)) = 2q — 1,
there is a point @ € Sp\ (L1UL3). Thus, there exists a line L3 containing
@ and two points in SyN(L1UL5), whence L is contained in S by Lemma
3.3. Then, #(So N (L1 U Ly U L3)) = 3¢ — 2 which contradicts v = 2q.

Subcase 2-2. Assume F < g + 3. If there were a line L in M such
that #(L; N S) = 0, then by Lemma 3.4, 3 < 3. Since y = § — a > 3,
we had o = 0 and 3 = 3. Again, by Lemma 3.4, 8 < 2 since H € L.
This is a contradiction.

Thus for a point P in L\ S, #(L; N S) > 1 for every line L; passing
through P. This implies that v = 8 — a > ¢. Since H € L, by Lemma
3.4 we have 8 < aq + 2. Hence, there are the following 5 possibilities

i) B=¢g+1,a=1
i) f=q+2, a=2
i) f=q+3,a=3
iv) f=¢+2,a=1
v) f=q+3, a=2.
For cases 3, 3, 3, since M = (Sp) and v = #Sy = g, these ¢ points do
not lie on a line. Hence, any triple of points in Sy does not lie on a line.
Applying (4), (5) for v = ¢, we have

- -1
#{Lllline in M such that L1NSy = ¢} = qz—l—q—q(%i)—Zq = %

Since

#{L1[line in M such that L1 NLN S # ¢, Ly N Sp # ¢} > ga,

we have

#{L1|line in M such that Ly # L,LiNLNS # ¢, L1 N So = ¢} < %a.
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Hence,

-1
#{Lllline in M such that L1 NS = ¢} > g(q2i) - %a > 0.

Therefore, there exists a line Ly in M such that Li NS = ¢. Thisis a
contradiction.

For cases 3, 3, assuming any g points of Sy lie on a line, as in the
previous case, we have

(@=2+D) _ _q

#{Ly|line in M such that L1 NS = ¢} > 5 5> 0.
Hence, there exists a line L; which is contained in S. This completes
the proof. O

LEMMA 3.6. Let S, H be as in Lemma 3.5. Further, assume #(H® N
S) =¢°. Then, L = (H°N S) is of dimension s and contained in S.

Proof. Let r = dim £. Since ¢" = #(£ N H®) > ¢, it is sufficient to
prove that LNH€ is contained in S. In case s = 1, if r > 2, then one could
choose non-collinear 3 points Py, P5, P3 in H°NS. Let M = (Py, P, P3).
Then, by Lemma 3.5, #(H°N S) > #(H°N M) > q+ 1. This is a
contradiction. Hence, r = 1.

Therefore, we may assume s > 2. It is sufficient to show that for
every non-collinear 3 points Py, P, P3 in H°N S, (P, P, P3) N H¢ is
contained in H°N S.

Assume there exists a plane M such that H® N M contains at least
non-collinear 3 points in S and is not contained in S. Then, by Lemma
3.5, there is a line L1 on M which is contained in S and a point P € L
on H°N M.

Take and fix a point R on L1 NH®. Let Q be a point in (H*NS)\ M.
Then, one can apply Lemma 3.5 for the plane M’ = (P, Q, R). Since the
line (P, R) is not contained in S, M’ is not contained in S. Then, either
the line (P,Q) or (R, Q) is contained in S. Since M’ is not contained
in S, not both of (P,Q) and (R,(Q) are contained in S. If (R,Q) is
contained in S, then the plane spanned by @ and L; is contained in S.
Thus for each point @ in (H°NS)\ M, one of the following possibilities
occurs.

i) the plane spanned by @ and L; is contained in S.
ii) the line (P, Q) is contained in S.
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Let

) #{M’|plane such that L; ¢ M’ c SN L}
e = %"{L'|line such that P € L'’ C SN L}.
Since # (M’ N H®)\ L1) = ¢* —qand # (L' N HS)\ {P}) = ¢ — 1, we
have
¢ = #(HC n.Ss)
= 8¢ -q) +elg-1)+*(L' NH® +1
= (bg+e+1)(g—1)+2.
Since ¢ > 5, this equation does not hold. This completes the proof. [

Proof of Theorem 3.2. Without lose of generality, we may assume
that s <t < wu. First, assume s > t. let H; be hyperplane in Hg, and
let £1 = (H{NS). Then, by Lemma 3.6, dim£; = s and £; C S. Let
H{ be another hyperplane in H; and let £'1 = (H’{NS). Then, we shall
show £; = L.

For a hyperplane H, if £; C H, then #(HNS) > N(s) > N(s— 1)+
N(t) + N(u), whence H € (H; U H, U Hy,). Similarly if £ C H, then
H € (HtUH, UHy,). On the other hand,

Nn—s—1) = #{HecP™|Ly C H}
F(LyU Ly U Ley)
N(n—s—-1).

IA

Hence
{HeP™|L;CcH} = {HecP™|L]CH}
= H:UH,UHy.

Thus, we have £; = £j.

Let S’ = S\ £;. For H € H,, since L1 = (H°N S), we have S’ C H.
Thus, (S") C ({H|H € Hs}. Let 7 = dim(S’). Then,

Nn—r—-1) = #{HcP™|(S)c H}
#Hs
= N(s).
Hence, r <m—s—1=t+u+1. Since, P* = (S) C (L1 U(S")), we have
n=dim{£; U (S")) = dimL;+dim(S’) —dim(L; N (S"))
< s+t+u+1—dim(L;N(SY),

v

whence £; N (8" = ¢.
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Since, there is a bijection of Hg UMy UHyy w0 PETUHD* we can apply
Theorem 2.3 to conclude the existence of the subspaces £, L3 such that
dim £y = t, dim L3 = w and Lo U L3 = S’. Thus, we get the conclusion,
in case s > t.

Second, we assume s = t > w. In this case, we cannot get (Hf N
Sy = (H§ N S) for Hy, Hy € Hs. However, taking the third hyperplane
Hj3 € H,, we can show that at least two of £; = (H{ N S) (j =1,2,3)
coincide.

Assume £; # L; (1 <i<j<3). Let Hj ={H € P™|L; C H} and
Hij ={H € P™|L;UL; C H}. Then,

#{H € P™|L; C H for some j}
> #Hy 7 Ho +7 Hy =% Hyp =% Hiz =% Hos.

Since dim(L; U L;) > s+ 1, we have #H;; < N(n — s — 2). As in the
case of s > t, we have H € H, UH; UH, UHy UHy, if £; C H. Thus

2N(n—s—1)—N(u) = #(HsUH;UHyUHe UHz)
> 3N(n—s—1)—3N(n—s—2).

This is a contradiction.

Assume £y # Ly. Let S; = S\ L; (j = 1,2). Then, for H € H,, if
Lj=(H°NS), then S; C H.

Consider 2 subspaces L = (\{{H € H,|S; C H} D (S}). Let r; =
dim(S}). Asin the previous case, we have N(n—~r;~1)+N(n—rz—1) >
2N(s), whence r1 < s+u+1orry < s+ u+ 1 We assume, say,
r1 < s+u+1. Then £, N(S]) = ¢ and dim(5]) = s+ u+ 1. Then, we
can apply Theorem 2.3 again, to obtain the conclusion.

Finally, we consider the case s = t = u. Ia this case, we show that
at least two of £; = (Hf N S), H; € Hs (j = 1,...,4) coincide. Then,
we have dim(S \ £1) = 2s + 1 and apply Theorem 2.3. The procedure
is similar to the above case, so we omit the proof. This completes the
proof of the theorem. O
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