A NOTE ON CLARKSON'S INEQUALITIES

CHONG-MAN CHO

ABSTRACT. It is proved that if for each n, $1 \leq p_n \leq 2$ and the (p_n,p'_n) Clarkson inequality holds in each Banach space X_n then the (t,t') Clarkson inequality holds in $(\sum_{n=1}^{\infty} X_n)_r$, the ℓ_r -sum of X_n 's, where $1 \leq r < \infty$, $t = \min\{p,r,r'\}$ and $p = \inf\{p_n\}$. The (p,p') Clarkson inequality is preserved by quotient maps and a new proof of a Takahashi-Kato theorem stating that the (p,p') Clarkson inequality holds in a Banach space X if and only if it holds in its dual space X^* is given.

1. Introduction

In 1936, while proving the uniform convexity of ℓ_p and L_p (1 Clarkson [2] proved that if <math>X is either ℓ_p or L_p and $x, y \in X$ then for $p \geq 2$ $(\frac{1}{p} + \frac{1}{p'} = 1)$

(1)
$$||x+y||^p + ||x-y||^p \le 2(||x||^{p'} + ||y||^{p'})^{p-1},$$

(2)
$$2(\|x\|^p + \|p\|^p)^{p'-1} \le \|x + y\|^{p'} + \|x - y\|^{p'}.$$

$$(3) \quad 2(\|x\|^p + \|p\|^p) \le \|x + y\|^p + \|x - y\|^p \le 2^{p-1}(\|x\|^p + \|y\|^p).$$

For 1 these inequalities hold in the reverse sense.

Setting $x + y = \xi$, $x - y = \eta$, we can see that (1) is equivalent to (2), and the right side of (3) is equivalent to the left side of (3). Moreover, (3) follows from (1) and inequality $2(a^{p'} + b^{p'})^{p-1} \leq 2^{p-1}(a^p + b^p)$ for positive real numbers a and b. Therefore, any Banach space X satisfying inequality (1) satisfies the rest inequalities and the uniform convexity of X follows. For 1 , the inequality corresponding to (2) is

(4)
$$||x+y||^{p'} + ||x-y||^{p'} \le 2(||x||^p + ||y||^p)^{p'-1},$$

which is equivalent to (1).

Received March 8, 2001.

²⁰⁰⁰ Mathematics Subject Classification: Primary: 46B20, 46B10; Secondary: 46B25.

Key words and phrases: Clarkson's inequality, ℓ_p -sum, quotient map.

Later, Clarkson's inequalities have been studied in various Banach spaces and the inequalities themselves have been generalized in various ways(Ch XVIII in [10], [3], [4], [5], [7], [8], [12], [13]). Extensive studies of Clarkson's inequalities were done by Kato and Miyazaki([4], [5], [6], [11]), and also by Kato and Takahashi([6], [7], [12]). Following Takahashi and Kato[12], let us say that for $1 \le p \le 2$ the (p, p') Clarkson inequality holds in a Banach space X if

(5)
$$(\|x+y\|^{p'} + \|x-y\|^{p'})^{1/p'} \le 2^{1/p'} (\|x\|^p + \|y\|^p)^{1/p}$$

holds for all x and y in X. For p = 1, inequality (5) should be understood to be

$$\max\{\|x+y\|, \|x-y\|\} \le \|x\| + \|y\|.$$

Therefore, the $(1, \infty)$ Clarkson inequality holds in every Banach space. Setting $x + y = \xi$ and $x - y = \eta$, we can see that (5) is equivalent to:

(6)
$$(\|x\|^{p'} + \|y\|^{p'})^{1/p'} \le 2^{-1/p} (\|x + y\|^p + \|x - y\|^p)^{1/p}.$$

In 1997, Takahashi and Kato [12] proved that if for $1 \le p \le 2$, the (p, p') Clarkson inequality holds in a Banach space X, then the (t, t') Clarkson inequality holds in Lebesgue-Bochner space $L_r(X)$ $(1 \le r < \infty)$, where $t = \min\{p, r, r'\}$.

In this paper we will obtain a result analogous to that of Takahashi and Kato [12]. In Theorem 3, we will prove that if for each n, $1 \le p_n \le 2$ and the (p_n, p'_n) Clarkson inequality holds in each Banach space X_n then the (t, t') Clarkson inequality holds in $(\sum_{n=1}^{\infty} X_n)_r$, where $t = \min\{p, r, r'\}$, $p = \inf\{p_n\}$ and $1 \le r < \infty$. In Theorem 4, we will prove that the (p, p') Clarkson inequality is preserved by quotient maps.

2. Clarkson's inequality

We begin with reviewing a few definitions. If $\{X_n\}_{n=1}^{\infty}$ is a sequence of Banach spaces X_n 's, for $1 \leq p < \infty$ the ℓ_p -sum $(\sum_{n=1}^{\infty} X_n)_p$ of X_n 's is the space of all sequences $x = \{x_n\}_{n=1}^{\infty}, x_n \in X_n$ with $\sum_{n=1}^{\infty} \|x_n\|^p < \infty$. This space is a Banach space under the norm defined by $\|x\| = (\sum_{n=1}^{\infty} \|x_n\|^p)^{1/p}$. The dual space of $(\sum_{n=1}^{\infty} X_n)_p$ is $(\sum_{n=1}^{\infty} X_n^*)_{p'}$, where X_n is the dual space of X_n and Y is the conjugate exponent of Y. The Y-sum of two Banach spaces Y and Y is defined in an obvious manner and will be denoted by $Y \oplus_p Y$. The dual space of $X \oplus_p Y$ is $X^* \oplus_{p'} Y^*$.

The Rademacher functions r_n 's are defined by $r_n(t) = \operatorname{sgn}(\sin(2^n \pi t))$, $0 \le t \le 1$. Observe that if X is a Banach space and $x, y \in X$ then

$$\int_0^1 \|x + r_1(t)y\| dt = \frac{1}{2} \{ \|x + y\| + \|x - y\| \}.$$

We need two useful theorems due to Kato and Takahashi ([7], [12]).

THEOREM 1 [12]. Suppose $1 \le r . If the <math>(p, p')$ Clarkson inequality holds in a Banach space X, then the (r, r') Clarkson inequality holds in X.

Kato and Takahashi [7] gave an elegant proof of the following theorem. However, we will give a new proof of the theorem for its own interest.

THEOREM 2 [7]. For $1 \le p \le 2$, the (p, p') Clarkson inequality holds in a Banach space X if and only if it holds in X^* .

New proof. Suppose the (p,p') Clarkson inequality holds in X, and $x^*,y^*\in X^*$. We will prove the inequality (6) for x^* and y^* . Let $\delta>0$. We choose $(x,y)\in X\oplus_p X$ such that $\|x\|^p+\|y\|^p=1$ and $(\|x^*\|^{p'}+\|y^*\|^{p'})^{1/p'}\leq (1+\delta)(x^*(x)+y^*(y))$. Then we have

$$\frac{1}{1+\delta}(\|x^*\|^{p'} + \|y^*\|^{p'})^{1/p'} \\
\leq x^*(x) + y^*(y) \\
= \int_0^1 (x^* + r_1(t)y^*)(x + r_1(t)y) dt \\
\leq \left(\int_0^1 \|x^* + r_1(t)y^*\|^p dt\right)^{1/p} \left(\int_0^1 \|x + r_1(t)y\|^{p'} dt\right)^{1/p'} \\
= \left\{\frac{1}{2}(\|x^* + y^*\|^p + \|x^* - y^*\|^p)\right\}^{1/p} \left\{\frac{1}{2}(\|x + y\|^{p'} + \|x - y\|^{p'})\right\}^{1/p'} \\
\leq 2^{-\frac{1}{p}}(\|x^* + y^*\|^p + \|x^* - y^*\|^p)^{1/p}(\|x\|^p + \|y\|^p)^{1/p}.$$

Since $\delta > 0$ is arbitrary and $||x||^p + ||y||^p = 1$, inequality (6) holds in X^* , and hence the (p, p') Clarkson inequality holds in X^* .

Conversely, if the (p, p') Clarkson inequality holds in X^* , then it holds in X^{**} and hence in $X(\subseteq X^{**})$.

Combining the Clarkson's original proof of a Clarkson's inequality for ℓ_p [2] and Takahashi-Kato proof of the (t,t') Clarkson inequality for $L_r(X)$ [12], we have the following:

THEOREM 3. Suppose $1 \le r < \infty$, $1 \le p_n \le 2$ for each n and $p = \inf\{p_n\}$. If for each n, the (p_n, p'_n) Clarkson inequality holds in X_n , then the (t, t') Clarkson inequality holds in $(\sum_{n=1}^{\infty} X_n)_r$, where

$$t = \left\{ \begin{array}{ll} r & \text{if} & 1 \le r \le p \\ p & \text{if} & p \le r \le p' \\ r' & \text{if} & p' \le r < \infty \end{array} \right..$$

Proof. Since the $(1, \infty)$ Clarkson inequality for $(\sum_{n=1}^{\infty} X_n)_r$ is trivial, we assume that r > 1 and p > 1.

Let $p \leq r \leq p'$, and let $x = (x_n), y = (y_n) \in (\sum_{n=1}^{\infty} X_n)_r$ with $x_n, y_n \in X_n$. Then

$$||x + y||^{p'} + ||x - y||^{p'}$$

$$= \left(\sum_{n=1}^{\infty} ||x_n + y_n||^r\right)^{p'/r} + \left(\sum_{n=1}^{\infty} ||x_n - y_n||^r\right)^{p'/r}$$

$$= \left(\sum_{n=1}^{\infty} (||x_n + y_n||^{p'})^{r/p'}\right)^{p'/r} + \left(\sum_{n=1}^{\infty} (||x_n - y_n||^{p'})^{r/p'}\right)^{p'/r}$$

$$\leq \left(\sum_{n=1}^{\infty} (||x_n + y_n||^{p'} + ||x_n - y_n||^{p'})^{r/p'}\right)^{p'/r}$$
(by Minkowski's inequality for $r/p' \leq 1$)
$$\leq 2\left(\sum_{n=1}^{\infty} (||x_n||^p + y_n||^p)^{r/p}\right)^{p'/r}$$
(by the (p_n, p'_n) Clarkson inequalities in X_n 's)
$$\leq 2\left(\left(\sum_{n=1}^{\infty} ||x_n||^r\right)^{p/r} + \left(\sum_{n=1}^{\infty} ||y_n||^r\right)^{p/r}\right)^{p'/p}$$
(by Minkowski's inequality for $r/p \geq 1$)
$$= 2\left(||x||^p + ||y||^p\right)^{p'/p}.$$

Therefore, the (p, p') Clarkson inequality holds in $(\sum_{n=1}^{\infty} X_n)_r$.

If $1 < r \le p$, then by Theorem 1 the (r,r') Clarkson inequality holds in every X_n and hence in $(\sum_{n=1}^{\infty} X_n)_r$ by the preceding part. If $p' < r < \infty$, then 1 < r' < p and the (r',r) Clarkson inequality holds in every X_n^* and hence in $(\sum_{n=1}^{\infty} X_n^*)_{r'} = ((\sum_{n=1}^{\infty} X_n)_r)^*$. Therefore, the (r',r) Clarkson inequality holds in $(\sum_{n=1}^{\infty} X_n)_r$.

Recall that a linear map T from a Banach space X to a Banach space Y is called a quotient map if T carries the open unit ball of X onto the open unit ball of Y. The (p,p') Clarkson inequality is preserved by quotient maps. More specifically we have :

THEOREM 4. Suppose X and Y are Banach spaces, and the (p, p') Clarkson inequality holds in X. If there exists a quotient map $T: X \to Y$, then the (p, p') Clarkson inequality holds in Y. In particular, if Z is a closed subspace of X, then the (p, p') Clarkson inequality holds in X/Z.

Proof. Suppose the (p, p') Clarkson inequality holds in X and $T: X \to Y$ is a quotient map. Then $T^*: Y^* \to X^*$ is an isometry into X^* . Since the (p, p') Clarkson inequality holds in X^* . It holds in $T^*(Y^*)$ and hence in Y^* . By Theorem 2, the (p, p') Clarkson inequality holds in Y. The (p, p') Clarkson inequality for X/Z is obvious.

References

- [1] R. P. Boas, Uniform Convex Spaces, Bull. Amer. Math. Soc. 46 (1940), 304-311.
- [2] J. A. Clarkson, *Uniform Convex Spaces*, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [3] F. Cobos, Clarkson's Inequalities for Sobolev Spaces, Math. Japon. 31 (1986), 17–22.
- [4] M. Kato, Generalized Clarkson's Inequalities and the Norms of the Littlewood Matrices, Math. Nachr. 114 (1983), 163–170.
- [5] M. Kato and K. Miyazaki, On Generalized Clarkson's Inequalities for $L_p(\mu; L_q(\nu))$ and Sobolev spaces, Math. Japon. 43 (1996), 505–515.
- [6] M. Kato, K. Miyazaki, and Y. Takahashi, Type, Cotype Constants for $L_p(L_q)$, Norms of the Rademacher Matrices and Interpolation, Nihonkai Math. J. 6 (1995), 81–95.
- [7] M. Kato and Y. Takahashi, Type, Cotype Constants and Clarkson's Inequalities for Banach spaces, Math. Nachr. 186 (1997), 187-196.
- [8] M. Koskela, Some Generalizations of Clarkson's Inequalities, Univ. Beograd. Publ. Elekrotehn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 89-93.
- [9] M. Milman, Complex Interpolation and Geometry of Banach Spaces, Ann. Mat. Pura Appl. 136 (1984), 317–328.
- [10] D. S. Mitrinović, J. E. Pecarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
- [11] K. Miyazaki and M. Kato, A Vector-Valued Interpolation Theoretical Proof of the Generalized Clarkson Inequalities, Hiroshima Math. J. 24 (1994), 565-571.
- [12] Y. Takahashi and M. Kato, Clarkson and Random Clarkson Inequalities for $L_r(X)$, Math. Nachr. 188 (1997), 341–348.
- [13] A. Tonge, Random Clarkson Inequalities and L_p-Versions of Grothendieck's Inequality, Math. Nachr. 131 (1987), 335–343.

Department of Mathematics, Hanyang University, Seoul 133-791, Korea $\textit{E-mail}\colon \text{cmcho@hanyang.ac.kr}$