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POSITIVE COEXISTENCE OF STEADY STATES FOR
COMPETITIVE INTERACTING SYSTEM WITH
SELF-DIFFUSION PRESSURES

KiMuN Ryu AND INKYUNG AHN

ABSTRACT. We discuss the existence of positive solutions to a cer-
tain nonlinear elliptic system representing a competition interaction
with self-diffusion. The method used here is a fixed point index
theory in a positive cone. We give a sufficient condition for the
existence of positive solutions.

1. Introduction and existence theorem

In this paper, we consider the following coupled elliptic system rep-
resenting a competitive interaction between two different species with
self-diffusion :

_A(p(u)/u’ = uf(u, U)
(1.1) —AyY(v)v = vg(u,v) in Q,
(u,v) = (0,0) on 02,

where A is the Laplacian operator, §2 is a bounded domain of R” with
a smooth boundary 0%, and the functions ¢, ), f, g satisfy certain con-
ditions.

These equations can be thought of as the steady-state equations for a
system of generalized Lotka-Volterra equations under suitable conditions
on f and g. u and v may represent the densities of two species of
interacting populations in problems arising in many applications, namely
biology, ecology, etc. The functions f and g are called the relative growth
rates of those populations. In mathematical model, two species compete
each other if these two relative growth rates are decreasing in the other
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opposer, respectively. For example, if © and v are in competition, then
fv < 0and g, <0. See Chapter 14 in [11] for details.

We say that the system (1.1) has a positive solution (u,v) if u(z) > 0
and v(z) > 0 for all z € Q. The existence of a positive solution (u,v) to
system (1.1) is also called a positive coezistence.

In [5], L. Li and R. Logan investigated the existence of positive so-
lutions of the elliptic system under Dirichlet boundary conditions using
the fixed point index theory for the competition model:

{ —Au = u[f(u) - g(v)]
~Av =) —a(u)] inf.

In [7], A. Leung and G. Fan, by using the Schauder fixed point theo-
rem, found a positive solution for the following elliptic systems between
appropriate upper and lower solutions under some conditions of f and

g.

~Ap(v) = g(z,u,v) inQ,
(u,v) = (0,0) on 0.
In [8], W. Ruan considered the coupled competition elliptic system
with the linear diffusion and growth rates under homogeneous Dirichlet
boundary condition :

(1.2) —Al(a1 + Br1u + Bi2v)|u = u(a; — biyu — bygv)
' —A((og + faru + Bo2v)]v = v(az — ba1u — bagv)  in £,

where o, 55, ai, b;j are nonnegative constants with o; > 0, b;; > 0 for
i = 1,2. The author applied the index theory to show the existence of
positive solutions to the system (1.2). This system (1.2) was proposed
first by Shigesada et al. in [10].

If the diffusion rate in reaction-diffusion equations only depends on
the density of one species itself, it is called self-diffusion pressure. On
the other hand, if the diffusion is affected by the density of the other
species, we call it cross-diffusion pressure. One can also refer [2], [6] for
systems with cross-diffusion pressures which are linear with respect to
the densities.

In this paper, we give a sufficient condition for the existence of posi-
tive solutions of system (1.1) which has a self-diffusion pressure by using
the method of the fixed point index of compact operators in a positive
cone.

Consider the system (1.1) satisfying the following hypotheses:

(H1.1) (0),(0) > 0 and (u), ¥(v) are CF inu,v with py(u), Y, (v) >
0 for all u,v > 0, respectively.
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(H1.2) f and g are C! in u and v.

(H1.3) fu, fv, gu and g, < 0 for (u,v) € [0,00) X [0, 00).

(H1.4) There exist constants C; > 0 and Cy > 0 such that f(Cy,0),
g(oa 02) <0.

In the above assumptions, (H1.3) represents the competing interac-
tions between two species and (H1.4) implies the logistic property of
growth rates for each species. 4

Let A(z) > 0in C%(Q) and B(z) € L°(Q). Then it is easy to observe
that the following eigenvalue problem:

(1.3) A@)AG+B(z)§= ¢ nQ,

. ¢(z) =0 on 0f)
is equivalent to the problem
(1.4) { AlA(z)¢] + B(z)p = Ap in Q,

. d(x)=0 on 092,

if we let ¢ := A(z)¢ in (1.3). Thus the well-known variational property
(see Chapter 11 in [11]) of eigenvalues of (1.3) can be applied to the
problem (1.4). In fact, the following observation is useful throughout in
this article.

OBSERVATION 1.1. The eigenvalue problem (1.4) has a positive solu-
tion ¢ € C*(Q) and a unique \. Moreover, \ is decreasing in A(z) and
increasing in the ratio B(z)/A(z).

Throughout this paper, let \{(AA(z) + B(z)) denote the unique
eigenvalue )\ of the eigenvalue problem (1.4) corresponding to the unique
positive eigenfunction ¢(x).

Now we give the existence theorem of positive solution for the system
(1.1).

Denote the nonnegative nonzero solution of our system, if they exist,
when one of the species is absent by (ug,0) and (0,vp). In fact, such

semi-trivial solutions exist if A;(—A) < %(’)OT) and A\ (—A) < %%6%) (See

Theorem 2.9 in section 2).

THEOREM 1.2. Consider the system (1.1) with hypotheses (H1.1)—

(H1.4). Suppose that A\ (—A) < %60)) and \(—A) < 909 Then

(i) The nonnegative solution (u,v) of (1.1) has a priori bounds;
u(z) < C1, v(z) < Cy where Cy and Cy are the constants in (H1.4).
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(ii) If M (Ap(0) + f(0,v9)) > 0 and A (Aw(0) + g(uo,0)) > 0, then
(1.1) has a positive solution.

2. Preliminaries

In this section, we state the some known lemmas and give the exis-
tence theorem for the scalar equation.
We consider the following scalar equation:

{ —Ap(u)u =uf(u) inQ,
u(z) =0 on 012,

where ) is a bounded connected domain in R with a smooth boundary
Q. The functions ¢ : [0,00) — [0,00) and f : [0,00) — R are assumed
to satisfy the following hypotheses:

(H2.1) ©(0) > 0 and p(u) is C* in u with @, (u) > 0 for all u > 0.

(H2.2) f(u) is C! in u with f,(u) <0 for all u > 0.

(H2.3) f(0) > 0 and f(u) < 0 on [Cy, 00) for some constant Cp > 0.

(2.1)

REMARK 2.1. Define a mapping G : [0,00) — [0,00) by G(u) =
p(u)u for all z € Q. Then by the hypothesis (H2.1), we have

g—f = pyu(u)u + p(u) > 0 for all (z,u) € Q x [0, 00).
Thus the map G(u) has a continuous inverse and denote it by G~ (u).
Also we can see that %(G_1 (u)) > 0 for all u > 0 by the inverse function

theorem.

DEFINITION 2.2. A function u € C(Q) is called a solution of (2.1) if
e(u)u € C?*¥(Q) and u(z) satisfies (2.1).

DEFINITION 2.3. A function 4(z) € C(Q2) is called an upper solution
of (2.1) if 4 satisfies the following conditions:

(2.2) —Ap(t)a > af(d) inQ, a(x)>0 on ON.

Similarly, we define a lower solution u(z) of (2.1) by reversing the in-
equalities in (2.2).



Steady states for competitive system 647

DEFINITION 2.4. Let X be a nonempty subset of some ordered set
Y. A fixed point x of a map f: X — Y is called maximal(minimal) if
every fixed point y of f in X satisfies x > y(y > z).

LEMMA 2.5. Let A(x) > 0in C?(Q), B(z) € L®°(Q) and u > 0, u Z 0
in Q with v = 0 on 0.

(i) If 0 # (AA(x) + B(z))u > 0, then A\ (AA(z) + B(z)) >

(i) If 0 # (AA(z) + B(z))u <0, then A1 (AA(z) + B(z)) <

(iii) If (AA(z) + B(z))u = 0, then A\ (AA(z) + B(z)) = 0.

Proof. We only prove (i). Let ¢(z) > 0 be the eigenfunction corre-
sponding to the principal eigenvalue A\;(AA(z) + B(z)). Then we have
0 < [qo(AA(z) + B(z))u = M(AA(z) + B(z)) [q¢u. Since u # 0,
M(AA(z) + B(z)) > 0. O

Let T' : E — E be a linear operator on a Banach space. Denote the
spectral radius of T' by r(T).

LEMMA 2.6. Assume that T is a compact positive linear operator on
an ordered Banach space. Let u > 0 be a positive element. Then

(i) If Tu > u, then r(T) > 1.

(i) If Tw < u, then r(T) < 1.

(ii) If Tu = u, then r(T) = 1.

Proof. See Lemma 2.3 in [4]. d

LEMMA 2.7. The nonnegative solution u(x) of (2.1) with hypotheses
(H2.1)~(H2.3) has a priori bound; u(z) < Cy for all z € .

Proof. Assume that u(z) > Cp for some z € 2. Let Q) = {z € Q:
u(z) > Cp}. Then we have —Ap(u)u = uf(u) < uf(Co) < 0in Q3. By
the strong maximum principle, we can see that p(u)u < p(Cy)Cy for all
x € Q1. By the monotonicity of ¢(u)u, we must have u(z) < Cy for all
x € €, which is a contradiction to the definition of €. 0]

COROLLARY 2.8. The nonnegative solution u(x) of (2.1) with hy-
potheses (H2.1)-(H2.3) satisfies f(u(z)) > 0.
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Proof. In the proof of Lemma 2.7, take a constant Cy as the unique
root of f(u) = 0 for w. O

REMARK 2.9. By virtue of Corollary 2.8, we can easily see that £ ((Z))

is monotone decreasing on 0 < u < Cy where Cp is the unique root of
f(u) =0 for u.

THEOREM 2.10. Let hypotheses (H2.1)—(H2.3) be hold.

(i) If \(=A) > fgog then (2.1) has no positive solution.

i) If A (—A <{ (0), then (2.1) has a unique positive solution.
#(0)

Proof. (i) If there exists a positive solution u(z) of (2.1), then we
have A1(Ap(u) + f(u)) = 0 by Lemma 2.5 (iii). But since A\j(—A) >
£% and % is monotone decreasing on 0 < u < (Cp, we must have

M (Ap(u) + f(u)) < 0 by Observation 1.1, which is a contradiction.

(i1) To prove the existence and uniqueness of a positive solution of

(2.1), we divide the proof into three steps.

Step 1 : Construction of upper and lower solution of (2.1).

Let @(z) = Cp where Cy is a constant in (H2.3). Then we can easily
check that 4(x) is a upper solution of (2.1), i.e

’ %w>0 or. O92.

To construct a lower solution %, let ¢ > 0 be the eigenfunction cor-
responding to A\;(—A). Then we have —A¢ = M (—-A)p < f(o)d) in
Q. The last inequality follows from the assumption. Equivalently we
can have —Ap(0)¢ < ¢f(0) in 2, and so there is a ¢ > 0 such that

~Ap(ed)p < df(ed) in Q by the continuity. If we take T = e¢, then we
can see that

(2.4) { —Ap(@u <uf(w) inQ,

u=0 ont ON2.
So T = €¢ is a positive lower solution of (2.1).

Step 2 : Existence of a positive solution of (2.1).
In Step 1, we can ensure that u < 4 for suitable e.
Define a compact operator F : [[@,]] — C(Q) by F := G~! o H where
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[[@, 4]] denotes the ordered interval in C(Q2). Here G~ is the inverse of
the map G(u) = ¢(u)u in Remark 2.1 and H is given by

Hu = (=A+ M) [(f(u) + Mp(u))y]

where M > 0 is a sufficiently large constant such that (f(u)+ Mp(u))u
is monotone increasing with respect to u. Such constant M exists by
(H2.1). Observe that u is a solution of (2.1) if and only if u is a fixed
point of F. Adding M ()i, M(u)a and applying G™1o (—A+ M)~?
to both sides of (2.3) and (2.4), respectively, we can have F(4) < 4 and
F(@) > u. By Corollary 6.2 in [1], we can conclude that F' has a minimal
fixed point u,, and a maximal fixed point uys in [[@, @]].

Step 3 : Uniqueness of positive solution of (2.1).

Let w,, and war be minimal and maximal fixed point of F' obtained
in Step 2. If u is a positive solution of (2.1), then we have u,, < u < upys
since u is also a fixed point of F. So it suffices to show that u,, = ups.

If we assume that u,, < ups, then by Remark 2.9 and Observation
1.1, we have A\ (Ap(um) + f(um)) > M (Ap(uprr) + f(upr)). But Lemma
2.5 (iil) implies A1{A@(um) + f(um)) = A (Ap(up) + f(unr)) = 0. So
we can derive a contradiction. This completes the proof. O

Let X be a Banach space and let F' be a Fréchet differentiable com-
pact operator in X which maps a closed convex set E into itself. In [1],
a fixed point index indg(F,U) can be defined on each open subset U of
E where boundary contains no fixed points of F'. The index is defined
through the Leray-Schauder degree

indg(F,U) = degx (I — F ov,v *(u),0),
where I is the identity map in X and v : X — FE is a retraction of E.
For y € E, define a wedge W, by
Wy =cl{x € X : y+rz € E for some r > 0},

where “cl” means the closure of the set. Let X, be the maximal subspace
of X contained in Wy. If X has the decomposition X = X, @ Y, where
Y, is a closed linear subspace, then the index of F' at y can be found by
analyzing certain eigenvalue problems in Yy and X,. Let T : X — Y},
be the projection operator of Y, along X,.

The following theorem can be obtained from Theorem 2.1 and The-
orem 2.2 in [9].
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THEOREM 2.11. Suppose y € X is a fixed point of F such that W,
is generating, i.e., X = cl{W, — W,} and X = X, ®Y,, for some closed
linear subspace Yy. If F'(y) has no nonzero fixed point in Wy, then
indg(F,U) exists and

(i) indg(F,y) =0 if T o F'(y) has an eigenvalue A > 1.

(ii) indg(F,y) = indx, (F'(y),0) if ToF'(y) has no eigenvalue greater
than 1.

3. Proof of Theorem 1.2

We can easily prove Theorem 1.2 (i) by the similar argument in
Lemma 2.7. Also we can obtain the following corollary by the slight
modification of Corollary 2.8.

COROLLARY 3.1. Assume that the semi-trivial solutions ug and vy of
(1.1) are exist. Then f(ug(z),0), g(0,vo(z)) > 0 for all z € Q.

We introduce the following notations.
D :={(u,v) € Co(Q)DCH(Q) : u<Q+1, v<R+1},
K :={u€ Cy(R) : 0<u(z), z €},
W =K&K,
P,:={(u,v) eW : u<p,v<p}, p>0,
D' := (intD)N'W.

Set p = max{Cy,C2} + 1. Define a compact operator F' : P, — W by
F(u,v) := (R(u,v), S(u,v)) where R(u,v) = G]'o(~A+M)7Y[(f(u,v)+
Mo(u))u] and S(u,v) = G5t o (A + M) [(g(u,v) + My (v))v]. Here
G7'(u) and G5'(v) are the inverse of the map Gi(u) = ¢(w)u and
Ga(v) = 9 (v)v, respectively, and M > 0 is a constant sufficiently large
so that (f(u,v) + M(u))u and (g(u,v) + My(v))v are increasing with
respect to u and v, respectively, for all (u,v) € P,. Note that D’ is open
in W and every positive solution of (1.1) is a fxed point of the compact
operator F' in D’ of Banach space X = Co(Q) x Co(Q).

LEMMA 3.2. Let the hypotheses (H1.1)—(H1.4) be hold. If A\; (Ap(0)+
£(0,0)) > 0 and A (Ap(0) + g(0,0)) > 0, then indw (F, (0,0)) = 0.
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Proof. For the point y = (0,0), observe that W, = K 9 K and
Xy = {0}, so Yy = X and T = I where I is the identity operator in X.
To use theorem 2.11, consider the eigenvalues of L :="F’(0,0). By the
calculation, we have

< ¢ ) T —A+ M)7H(£(0,0) + Mp(0))¢]

L =

7 o AT M7 (6(0,0) + My

for each (f’) € X. Let ¢ be the positive eigenfunction corresponding to
the eigenvalue p:= A1 (Ap(0)+ £(0,0)) > 0. Then Ap(0)p+ f(0,0)¢ =
pd > 0, and so —Ap(0)¢ + Mp(0)¢ < (f(0,0) + Mp(0))¢. Thus it
follows that T'¢ := ﬁ(—A + M)~Y(£(0,0) + Mp(0))¢] > ¢. So by
Lemma 2.6 (i), (7T} > 1. Using the Krein-Rutman theorem, we have
that 7(T') is an eigenvalue of T with positive eigenfunction ¢;. Thus
if we consider the pair (%) and A = 7(T) > 1, we have an eigenvalue

greater than one with a positive eigenfunction, and so we can conclude
that indw (F, (0,0)) = 0 by Theorem 2.11 (i). O

LEMMA 3.3. Let the hypotheses (H1.1)-(H1.4) be hold and assume
that A1 (Ap(0)+ £(0,0)) > 0 and A1 (A¥(0)+9(0,0)) > 0. If \; (Ay(0)+
9(ug,0)) > 0 and A\ (Ap(0) + f(0,v0)) > 0, then indw (F, (ug,0)) =
indw (F, (0,vg)) = 0.

Proof. We only calculate the index for the point y = (ug, 0) since the
calculation of indw (F, (0,vg)) is virtually the same.

For a point y = (up,0), observe that W, = Co(Q)d K, X, = Cp(Q) @
{0} and set an operator L := F'(up,0). If we let Y, = {0} & Cy(R2), then
X = X, @Y, with projection T'(u,v) = (0,v). By the calculation, we
have

1

L( ¢ ) = | #uluo)ug +pluo)
7 m(*A+M)‘lk(§ﬂ7)

for each ( } € X where h(¢,7) = [f(uo,0) + Mey(ug) + uo(fu(uo,0) +
M%(Uo))]f +uofu(u0, 0)n and k(&,n) = (g(uo, 0) + M(0))n.

Step 1 : Existence of indw (F, (ug,0)).

(_A + M)—lh(fan)
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Let (f}) € W, be a fixed point of L. Then we have

(3.1) - —A(pu(uo)uo + p(uo))é
= (f(uo,0) +upfuluo,0))€ + uofo(uo, 0)n,

(3.2) —Ap(0)n = g(uo, 0)n.

If n # 0in W, then n > 0, and so we must have A\; (A%(0) +
g(ug,0)) = 0 by Lemma 2.5 (iil), which is a contradiction to the as-
sumption. Now since n = 0 in W, (3.1) can be expressed by —A
(pulug)ug +¢(uo)) & = (f(uo,0) +uofuluo,0))§. If £ # 0 in Wy, then
we can see that 0 is an eigenvalue of A (¢, (up)uo+ ©{uo))+ (f(uo,0)+
ug fu(uo,0))I, and so A1 (A (py(uo)ug+ @(uwo))+ f(ug,0)+ uofuluo,0))
> 0 by Observation 1.1. But since f(ug,0) > 0 by Corollary 3.1, we have

’0 3 k73 ,0
[00.9) > fuoOruofuliod) | and so A (A(pu(uo)uo + w(uo)) + f(uo,0) +
ug fu(ug,0)) < A(Ap(ug) + f(up,0)) = 0, which is also a contradiction.
The last equality follows from Lemma 2.5 (iii). Consequently we can con-
clude that L has no nonzero fixed point in Wy, and thus indw (F, (ug,0))

exists by Theorem 2.11.

Step 2 : Calculation of indw (F, (uo, 0)).

To use Theorem 2.11, consider the eigenvalues of 7o L. Observe
that T o L has an eigenfunction of the form (2). Let ¢ be the positive
eigenfunction corresponding to the positive eigenvalue p := A1 (A(0)

+9g(ug,0)). As in the proof of Lemma 3.3, we can have ﬁ (-A+M)?

[(g(uo,0) + M+(0))¢p] > ¢, and so r(T o L) > 1 by Lemma 2.6 (i). Thus
we can conclude that indy (F, (ug,0)) = 0 by Theorem 2.11 (i). O

Recall that D' = (intD) N W where D := {(u,v) € Cp(Q2) ® Co(R2) :
u < Q+1, v < R+1}. Then we can observe that D’ contains the trivial
and semi-trivial solutions (0,0), (ug,0), (0,vg) of (1.1) by Theorem 1.2

(D).

LEMMA 3.4. Let D' be the bounded open set in W defined as above.
Then indw (F,D') = 1.

Proof. Clearly, 8D’ contains no fixed point of F, and so indw (F, D’)
exists.
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Define an operator Fy, by F,,(u,v) = (R, (u,v), S,(u,v)) for u € [0, 1],

Ryu(u,v) = GT" o (=A + M)~ [(uf (u,v) + Mop(u))u],
Su(u,v) = Gz o (=A + M) (ug(u, v) + Myp(v) ),

then clearly F' = Fy and, for each u, a fixed point of F,, is a solution of
the problem

~Ap(u)u = puf(u,v)
(3.3) ~A¢(v)v = pvglu,v)  in Q,
(u,v) = (0,0) on Q.

The converse is also true. By Theorem 1.2 (i), we can see that every
fixed point of F), satisfies u(z) < C) and v(z) < Cy in Q for each
p € [0,1], and so every fixed point of F, is in D but not on dD. Thus
the homotopy invariance property of index shows that indw (F),, D) is
independent of . So indw(F,D') = indw(Fy,D') = indw(Fy, D).
Also since if u = 0, then (3.3) has only the trivial solution (0,0), we get
indw(F(), DI) = indw(F(), (O, 0))
Let y = (0,0). Then we have W, = K @ K and
1
——(=A + M) (Mp(0)¢)
o(5)- A+ M40
N ——(=A + M)~ Y (Mp(0

for each (;’;) € X where L := F}(0,0).

Let (S) be an eigenfunction of L with corresponding eigenvalue .
Then we can have

~Ap(0)€ = =2 Mop(0)¢
A (O = TS M(O0) 0,
( 777) = (0,0) on BQ,

and the above problem has no nonzero solution for A > 1. Therefore
A < 1. So we can see that every eigenvalue of L is less than 1. Thus we
may conclude indw (Fy, (0,0)) = 1. g

By virtue of Lemma 3.2 - 3.4, we can prove the Theorem 1.2 (ii).
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Proof of Theorem 1.2 (ii). Suppose that F has no positive fixed point
in D'. Then by Lemma 3.4 and the additivity of index, we have
(3.4)
indw (F, (0,0)) +indw (F, (ug, 0)) +indw (F, (0,v0)) = indw (F, D,) =1.

If X1 (Ap(0)+£(0,v9)) > 0 and Ay (Ay(0)+g(wup,0)) > 0, then by Lemma
3.2 and 3.3,

indw (F, (0,0)) + indw (F, (ug, 0)) + indw (F, (0,v9)) = 0,

which is a contradiction to (3.4). Therefore our problem must have a
positive solution in D'. O

4. Example

Finally we give a simple model with self-diffusion pressure which the
diffusion and growth rates are nonlinear with respect to the densities of
species.

Consider the following system of a competition interacting with self-
diffusion:

—Al(oq + fru)™u] = (a1 — byyu® — biav)u
(4.1) —-A[(a2 + /BQ'U)n’U] = (a2 — boju — bzgvl)v in Q,
(u,v) = (0,0) on 0N

where o, a;, B;, b;; are nonnegative constants with o; > 0, b;; > 0 for
1 = 1,2 and m,n,k,l > 0. One can observe that if 8; = o = 0 and
k =1 =1, then the model (4.1) is a classical Lotka-Volterra system with
competing interaction between any two species.

COROLLARY 4.1. Assume that a; > o; A\ (—A) fori = 1,2. If
1 1 1 1
T_,.1 E_ F
A1(—A) < min {alb” & b12, azby —ay b }, then (4.1) has a positive so-

i
T 13
aTrby, onb

lution.

Proof. The assumption a; > a;A1(—A) for ¢ = 1,2 ensure that the

semi-trivial solutions up > 0, vo > 0 and we can see that up < (§+)*
1
and vy < (;2—22)7 by Lemma, 2.7. Note that ‘“—;?}2—”, “2—;%31—“ are monotone

decreasing for v > 0 and u > 0, respectively. So by using these facts
and Observation 1.1, we have A\;(Aaf* + a1 — biavg) > M(Aal* + a; —

b12(£2)7) > 0 and Ay(Acg +a—barug) = A1{Aag +az—bg (E)F) > 0.
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The last inequalities follows from the assumptions. Hence (4.1) has a
positive solution by Theorem 1.2 (ii). O

REMARK 4.2. Besides the above example, one can use Theorem 1.2(ii)
to have a positive coexistence for more general model as long as the
system satisfies (H1.1)—(H1.4).
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