What Can Caenorhabditis elegans Tell Us About Nematiocides and Parasites\ulcorner

  • Dent, Joseph A. (Departmtn of Biology. McGill University 1205 Ave, Dr. Penfield. Montreal, Quebes H3A1B1, Canada)
  • Published : 2001.07.01

Abstract

Nematode infections compromise human health and reduce agricultural productivtiy. Experiments that exploit the powerful molecular genetics of the free-living nematode Caenorhabdl - elegans have contributed to our understanding of how the major classes of anthelmintic nema-tocides kill worms and how worms might evolve resistance to these drugs In C. elegans, as in parasites, benzimidixoles interfere with microtubule polyumerization the imidazothiazoles/tetra-hydropyrimidines activate nicotinic acetylcholine receptors, and the macrocyclic la ctones activate qlutamate-gate chloride chanels. Mutant alleles of genes that encode drug targes often confer resistance in C. elegans. Preliminary evidence suggests that alleles of homologous genes in parasites will, in many cases, also play a role in resistance. Thus information acquired from C. elegans can be usefully applied to understand the mechanisms of drug sensitivity and the genetics of resis-tance in parasites.

Keywords

References

  1. Bull. World Health Organ. v.75 Strategies and tools for the control/elimination of lymphatic filariasis. Ottesen, E. A.;B. O. L. Duke;M. Karam;K. Behbe-hani
  2. Anim. Pharmacol. v.7 The antiparasitics market. Bird, J.
  3. Annu. Rev. Phytopathol. v.24 Benzimidazole fungicides: mechanism of action and biological impact. Davidse, L. C.
  4. Int. J. Parasitol. v.18 The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Lacey, E.
  5. Goodman & Gilman's The Pharmacological Basis of Therapeutics. Drugs Used in the Chemotherapy of Helminthiasis. Tracey, J. W.;L. T. Webster.;J. G. Hardman(ed.);L. E. Limbird(ed.)
  6. J. Cell Biol. v.109 Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity. Driscoll, M.;E. Dean;E. Reilly;E. Bergholz;M. Chalfie
  7. Can. J. Zool. v.60 The effects of mebendazole on the growth and development of C. elegans. Spence, A. M.;K. M. B. Malone;M. M. A. Novak;R. A. Woods
  8. J. Cell Biol. v.93 Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. Chalfie, M.;J. N. Thomson
  9. Int. J. Parasitol. v.20 Effect of benzimidazole drugs on tubulin in benzimidazole resistant and susceptible strains of Caenorhabditis elegans. Enos, A.;G. C. Coles
  10. Can. J. Zool. v.67 The genetics, ultrastructure, and tubulin polypeptides of mebendazoleresistant mutants of Caenorhabditis elegans. Woods, R. A.;K. M. B. Malone;A. M. Spence;W. J. Sigurdson;E. H. Byard
  11. Science v.282 Comparison of the complete protein sets of worm and yeast: orthology and divergence. Chervitz, S. A.;L. Aravind;G. Sherlock;C. A. Ball;E. V. Koonin;S. S. Dwight;M. A. Harris;K. Dolinski, S. Mohr;T. Smith;S. Weng;C. J. M.;D. Botstein
  12. Cell Motil. Cytoskeleton. v.22 Amino acid alterations in the benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Jung, M. K.;I. B. Wilder;B. R. Oakley
  13. Mol. Plant Pathol. v.82 Characterisation of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other pathogenic fungi. Koenraadt, H.;S. C. Sommerville;A. L. Jones
  14. Int. J. Parasitol. v.21 Temperature dependent binding of mebendazole to tubulin in benzimidazole-susceptible and -resistant strains of Trichostrongylus colubriformis and Caenorhabditis elegans. Russell, G. J.;E. Lacey
  15. Vet. Parasitol. v.54 Anthelmintic resistance. Prichard, R.
  16. Int. J. Parasitol. v.20 Anthelmintic resistance in nematodes: extent, recent understanding and future directions for control and research. Prichard, R. K.
  17. Am. J. Vet. Res. v.36 Influence of the anthelmintic mebendazole on microtubules and intracellular organelle movement in nematode intestinal cells. Borgers, M.;S. De Nollin;M. De Brabander;D. Thienpont
  18. J. Parasitol. v.61 no.1 Ultrastructural changes in Ascaris suum intestine after mebendazole treatment in vivo. Borgers, M.;S. De Nollin
  19. Mol. Biochem. Parasitol. v.38 Specific interaction of benzimidazole anthelmintics with tubulin: highaffinity binding and benzimidazole resistance in Haemonchus contortus. Lubega, G. W.;R. K. Prichard
  20. J. Parasitol. v.71 Tubulin and benzimidazole-resistance in Trichostrongylus colubriformis (Nematoda). Sangster, N. C.;R. K. Prichard;E. Lacey
  21. Genetics. v.138 Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Beech, R. N.;R. K. Prichard;M. E. Scott
  22. Biochem. Pharmacol. v.47 Haemonchus contortus: the role of two beta-tubulin gene subfamilies in the resistance to benzimidazole anthelmintics. Lubega, G. W.;R. D. Klein;T. G. Geary;R. K. Prichard
  23. Mol. Biochem. Parasitol. v.43 Molecular analysis of selection for benzimidazole resistance in the sheep parasite Haemonchus contortus. Roos, M. H.;J. H. Boersema;F. H. Borgsteede;J. Cornelissen;M. Taylor;E. J. Ruitenberg
  24. Biochem. Biophys. Res. Commun. v.191 Effect of selection for benzimidazole resistance in Haemonchus contortus on beta-tubulin isotype 1 and isotype 2 genes. Kwa, M. S.;F. N. Kooyman;J. H. Boersema;M. H. Roos
  25. Mol. Biochem. Parasitol. v.60 Molecular characterisation of beta-tubulin genes present in benzimidazole-resistant populations of Haemonchus contortus. Kwa, M. S.;J. G. Veenstra;M. H. Roos
  26. J. Mol. Biol. v.246 Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. Kwa, M. S.;J. G. Veenstra;M. Van Dijk;M. H. Roos
  27. Mol. Biochem. Parasitol. v.63 Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in betatubulin isotype 1. Kwa, M. S.;J. G. Veenstra;M. H. Roos
  28. Vet. Parasitol. v.80 PCR diagnosis of benzimidazole-susceptibility or -resistance in natural populations of the small ruminant parasite,Teladorsagia circumcincta. Elard, L.;J. Cabaret;J. F. Humbert
  29. Nature. v.212 Pyrantel tartrate, a new anthelmintic effective against infections of domestic animals. Austin, W. C.;W. Courtney;J. C. Danilewicz;D. H. Morgan;L. H. Conover;j. H. L. Howes;J. E. Lynch;J. W. McFarland;R. L. Cornwell;V. J. Theodorides
  30. Nature. v.209 Tetramisole (R 8299), a new, potent broad spectrum anthelmintic. Thienpont, D.;O. F. Vanparijs;A. H. Raeymaekers;J. Vandenberk;J. A. Demoen;F. T. Allewijn;R. P. Marsboom;C. J. Niemegeers;K. H. Schellekens;P. A. Janssen
  31. Neuroscience. v.5 Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Lewis, J. A.;C. H. Wu;J. H. Levine;H. Berg
  32. Genetics. v.77 The genetics of Caenorhabditis elegans. Brenner, S.
  33. Genetics. v.95 The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Lewis, J. A.;C. H. Wu;H. Berg;J. H. Levine
  34. Mol. Pharmacol. v.31 The levamisole receptor, a cholinergic receptor of the nematode Caenorhabditis elegans. Lewis, J. A.;J. T. Fleming;S. McLafferty;H. Murphy;C. Wu
  35. J. Neurosci. v.7 Cholinergic receptor mutants of the nematode Caenorhabditis elegans. Lewis, J. A.;J. S. Elmer;J. Skimming;S. McLafferty;J. Fleming;T. McGee
  36. J. Neurosci. v.17 Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. Fleming, J. T.;M. D. Squire;T. M. Barnes;C. Tornoe;K. Matsuda;J. Ahnn;A. Fire;J. E. Sulston;E. A. Barnard;D. B. Sattelle;J. A. Lewis
  37. Nat. Neurosci. v.2 One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Richmond, J. E.;E. M. Jorgensen
  38. Science v.282 Neurobiology of the Caenorhabditis elegans genome. Bargmann, C. I.
  39. Receptors Channels. v.6 An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Mongan, N. P.;H. A. Baylis;C. Adcock;G. R. Smith;M. S. Sansom;D. B. Sattelle
  40. Receptors Channels. v.3 Molecular cloning and functional co-expression of a Caenorhabditis elegans nicotinic acetylcholine receptor subunit (acr-2). Squire, M. D.;C. Tornoe;H. A. Baylis;J. T. Fleming;E. A. Barnard;D. B. Sattelle
  41. Receptors Channels. v.5 ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit. Molecular cloning and functional expression. Baylis, H. A.;K. Matsuda;M. D. Squire;J. T. Fleming;R. J. Harvey;M. G. Darlison;E. A. Barnard;D. B. Sattelle
  42. J. Mol. Biol. v.258 Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. Ballivet, M.;C. Alliod;S. Bertrand;D. Bertrand
  43. J. Exp. Zool. v.253 Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Avery, L.;H. R. Horvitz
  44. Genetics. v.141 Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Raizen, D. M.;R. Y. Lee;L. Avery
  45. Proc. Natl. Acad. Sci. USA v.95 Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Treinin, M.;B. Gillo;L. Liebman;M. Chalfie
  46. Neuron. v.14 A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Treinin, M.;M. Chalfie
  47. Pestic. Sci. v.16 Mode of action of the anthelmintics morantel, pyrantel and levamisole on the muscle cell membrane of the nematode Ascaris suum. Harrow, I. D.;K. A. F. Gration
  48. Parasitology. v.113 Electrophysiology of Ascaris muscle and anti-nematodal drug action. Martin, R. J.;M. A. Valkanov;V. M. E. Dale;A. P. Robertson;I. Murray
  49. Gene v.144 Cloning of a cDNA encoding a putative nicotinic acetylcholine receptor subunit of the human filarial parasite Onchocerca volvulus. Ajuh, P. M.;T. G. Egwang
  50. Mol. Biochem. Parasitol. v.84 Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Hoekstra, R.;A. Visser;L. J. Wiley;A. S. Weiss;N. C. Sangster;M. H. Roos
  51. Gene v.182 Cloning and sequence analysis of the candidate nicotinic acetylcholine receptor alpha subunit gene tar-1 from Trichostrongylus colubriformis. Wiley, L. J.;A. S. Weiss;N. C. Sangster;Q. Li
  52. Int. J. Parasitol. v.28 Binding of [3H]m-aminolevamisole to receptors in levamisolesusceptible and -resistant Haemonchus contortus. Sangster, N. C.;F. L. Riley;L. J. Wiley
  53. FASEB J. v.13 Resistance to levamisole resolved at the single-channel level. Robertson, A. P.;H. E. Bjorn;R. J. Martin
  54. Eur. J. Pharmacol. v.394 Pyrantel resistance alters nematode nicotinic acetylcholine receptor single-channel properties. Robertson, A. P.;H. E. Bjorn;R. J. Martin
  55. Science v.221 Ivermectin: a potent new antiparasitic agent. Campbell, W. C.;M. H. Fisher;E. O. Stapley;G. Albers-Schonberg;T. A. Jacob
  56. J. Antibiot. v.33 Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico- chemical properties. Takiguchi, Y.;H. Mishima;M. Okuda;M. Terao;A. Aoki;R. Fukuda
  57. J. Parasitol. v.81 The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. Arena, J. P.;K. K. Liu;P. S. Paress;E. G. Frazier;D. F. Cully;H. Mrozik;J. M. Schaeffer
  58. Proc. Natl. Acad. Sci. USA v.97 The genetics of ivermectin resistance in Caenorhabditis elegans. Dent, J. A.;M. M. Smith;D. K. Vassilatis;L. Avery
  59. FASEB J. v.41 Interaction of GABA and volatile anesthetics in the nematode Caenorhabditis elegans. Boswell, M. V.;P. G. Morga;M. M. Sedensky
  60. EMBO J. v.16 avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. Dent, J. A.;M. W. Davis;L. Avery
  61. Biochem. Pharmacol. v.38 Avermectin binding in Caenorhabditis elegans: A two-state model for the avermectin binding site. Schaeffer, J. M.;H. W. Haines
  62. Mol. Pharmacol. v.40 Solubilization and characterization of a high affinity ivermectin binding site from Caenorhabditis elegans. Cully, D. F.;P. S. Paress
  63. Proc. Natl. Acad. Sci. USA v.89 Photoaffinity labeling of avermectin binding sites from Caenorhabditis elegans and Drosophila melanogaster. Rohrer, S. P.;P. T. Meinke;E. C. Hayes;H. Mrozik
  64. Mol. Pharmacol. v.40 Avermectin-sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Arena, J. P.;K. K. Liu;P. S. Paress;D. F. Cully
  65. Mol. Brain Res. v.15 Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA:evidence for modulation by avermectin. Arena, J. P.;K. K. Liu;P. S. Paress;J. M. Schaeffer;D. F. Cully
  66. Nature v.371 Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Cully, D. F.;D. K. Vassilatis;K. K. Liu;P. S. Paress;L. H. Van der Ploeg;J. M. Schaeffer;J. P. Arena
  67. Gene v.201 Alternative splicing of a Caenorhabditis elegans gene produces two novel inhibitory amino acid receptor subunits with identical ligand binding domains but different ion channels. Laughton, D. L.;G. G. Lunt;A. J. Wolstenholme
  68. J. Exp. Biol. v.200 Reporter gene constructs suggest that the Caenorhabditis elegans avermectin receptor beta-subunit is expressed solely in the pharynx. Laughton, D. L.;G. G. Lunt;A. J. Wolstenholme
  69. J. Biol. Chem. v.272 Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Vassilatis, D. K.;J. P. Arena;R. H. Plasterk;H. A. Wilkinson;J. M. Schaeffer;D. F. Cully;L. H. Van der Ploeg
  70. Parasitology. v.113 Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates. Cully, D. F.;H. Wilkinson;D. K. Vassilatis;A. Etter;J. P. Arena
  71. J. Neurochem. v.69 The Caenorhabditis elegans avermectin resistance and anesthetic response gene unc-9 encodes a member of a protein family implicated in electrical coupling of excitable cells. Barnes, T. M.;S. Hekimi
  72. Genetics v.133 Molecular and genetic analysis of unc-7, a Caenorhabditis elegans gene required for coordinated locomotion. Starich, T. A.;R. K. Herman;J. E. Shaw
  73. Nature v.391 Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes. Phelan, P.;L. A. Stebbings;R. A. Baines;J. P. Bacon;J. A. Davies;C. Ford
  74. Dev. Biol. v.117 Mutant sensory cilia in the nematode Caenorhabditis elegans. Perkins, L. A.;E. M. Hedgecock;J. N. Thomson;J. G. Culotti
  75. Genetics v.139 Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Starich, T. A.;R. K. Herman;C. K. Kari;W. H. Yeh;W. S. Schackwitz;M. W. Schuyler;J. Collet;J. H. Thomas;D. L. Riddle
  76. Curr. Opin. Cell. Biol. v.12 Sorting and transport in C. elegans: a model system with a sequenced genome. Koushika, S. P.;M. L. Nonet
  77. Exp. Parasitol. v.77 Haemonchus contortus: ivermectininduced paralysis of the pharynx. Geary, T. G.;S. M. Sims;E. M. Thomas;L. Vanover;J. P. Davis;C. A. Winterrowd;R. D. Klein;N. F. H. Ho;D. P. Thompson
  78. J. Parasitol. v.84 Effects of macrocyclic lactones on ingestion in susceptible and resistant Haemonchus contortus larvae. Kotze, A. C.
  79. Parasitology v.15 Trichostrongylus colubriformis: effect of anthelmintics on ingestion and oviposition. Bottjer, K. P.;L. W. Bone
  80. Exp. Parasitol. v.92 Haemonchus contortus: effects of glutamate, ivermectin, and moxidectin on inulin uptake activity in unselected and ivermectin-selected adults. Paiement, J. P.;C. Leger;P. Ribeiro;R. K. Prichard
  81. Br. J. Pharmacol. v.98 A patch-clamp study of effects of dihydroavermectin on Ascaris muscle. Martin, R. J.;A. J. Pennington
  82. Parasitology v.112 An electrophysiological preparation of Ascaris suum pharyngeal muscle reveals a glutamategated chloride channel sensitive to the avermectin analogue, milbemycin D. Martin, R. J.
  83. Mol. Biochem. Parasitol. v.103 Ligand-gated chloride channel subunits encoded by the Haemonchus contortus and Ascaris suum orthologues of the Caenorhabditis elegans gbr-2 (avr-14) gene. Jagannathan, S.;D. L. Laughton;C. L. Critten;T. M. Skinner;L. Horoszok;A. J. Wolstenholme
  84. Mol. Biochem. Parasitol. v.97 Cloning and localisation of an avermectin receptor-related subunit from Haemonchus contortus. Delany, N. S.;D. L. Laughton;A. J. Wolstenholme
  85. Biochem. Biophys. Res. Commun. v.254 Cloning, sequencing, and developmental expression levels of a novel glutamate-gated chloride channel homologue in the parasitic nematode Haemonchus contortus. Forrester, S. G.;F. F. Hamdan;R. K. Prichard;R. N. Beech
  86. J. Biol. Chem. v.271 Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. Cully, D. F.;P. S. Paress;K. K. Liu;J. M. Schaeffer;J. P. Arena
  87. Proc. Natl. Acad. Sci. USA v.97 Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Kane, N. S.;B. Hirschberg;S. Qian;D. Hunt;B. Thomas;R. Brochu;S. W. Ludmerer;Y. Zheng;M. Smith;J. P. Arena;C. J. Cohen;D. Schmatz;J. Warmke;D. F. Cully
  88. Exp. Parasitol. v.90 Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Blackhall, W. J.;J. F. Pouliot;R. K. Prichard;R. N. Beech
  89. Exp. Parasitol. v.92 Haemonchus contortus: characterization of a glutamate binding site in unselected and ivermectin-selected larvae and adults. Paiement, J.;R. K. Prichard;P. Ribeiro
  90. J. Parasitol. v.80 Ivermectin binding sites in sensitive and resistant Haemonchus contortus. Rohrer, S. P.;E. T. Birzin;C. H. Eary;J. M. Schaeffer;W. L. Shoop
  91. Int. J. Parasitol. v.25 Characterization of an ivermectin-resistant strain of Australian Haemonchus contortus. Le Jambre, L. F.;J. H. Gill;I. J. Lenane;E. Lacey
  92. Int. J. Parasitol. v.30 Inheritance of avermectin resistance in Haemonchus contortus. Le Jambre, L. F.;J. H. Gill;I. J. Lenane;P. Baker
  93. Mol. Biochem. Parasitol. v.95 Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Blackhall, W. J.;H. Y. Liu;M. Xu;R. K. Prichard;R. N. Beech
  94. Mol. Biochem. Parasitol. v.91 Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Xu, M.;M. Molento;W. Blackhall;P. Ribeiro;R. Beech;R. Prichard
  95. Exp. Parasitol. v.91 Haemonchus contortus: sequence heterogeneity of internucleotide binding domains from P-glycoproteins. Sangster, N. C.;S. C. Bannan;A. S. Weiss;S. C. Nulf;R. D. Klein;T. G. Geary
  96. Int. J. Parasitol. v.29 A hybridisation technique to identify anthelmintic resistance genes in Haemonchus. Le Jambre, L. F.;I. J. Lenane;A. J. Wardrop
  97. Arzneimittelforschung. v.29 Amidantel, a potent anthelminthic from a new chemical class. Wollweber, H.;E. Niemers;W. Flucke;P. Andrews;H. P. Schulz;H. Thomas
  98. Tropenmed Parasitol v.30 The efficacy of amidantel, a new anthelmintic, on hookworms and ascarids in dogs. Thomas, H.
  99. Eur. J. Pharmacol. v.113 The effects of amidantel (BAY d 8815) and its deacylated derivative (BAY d 9216) on Caenorhabditis elegans. Tomlinson, G.;C. A. Albuquerque;R. A. Woods
  100. Can. J. Zool. v.64 The effects of amidantel (Bay d 8815) and its deacylated derivative (Bay d 9216) on wild-type and resistant mutants of C. elegans. Woods, R. A.;K. M. B. Malone;C. A. Albuquerque;G. Tomlinson
  101. Biotechnology (NY). v.10 Bacillus thuringiensis - insects and beyond. Feitelson, J. S.;J. Payne;L. Kim
  102. J. Parasitol. v.75 Factors influencing lethality of Bacillus thuringiensis kurstaki toxin for eggs and larvae of Trichostrongylus colubriformis (Nematoda). Meadows, J. S.;S. Gill;L. W. Bone
  103. Fundam. Appl. Nematol. v.19 Effect of nematocidal Bacillus thuringiensis strains on free-living nematodes. 1. Light microscopic observations, species and biological stage specificity and identification of resistant mutants of Caenorhabditis elegans. Borgonie, G.;M. Claeys;F. Leyns;G. Arnaut;D. De Waele;A. Coomans
  104. Invert. Reprod. Devel. v.17 Bacillus thuringiensis strains affect population growth of the freeliving nematode Turbatrix aceti. Meadows, J.;S. S. Gill;L. W. Bone
  105. Fundam. Appl. Nematol. v.18 Nematicidal activity of Bacillus thuringiensis isolates. Leyns, F.;G. Borgonie;G. Arnaut;D. De Waele
  106. Exp. Parasitol. v.60 Trichostrongylus colubriformis: egg lethality due to Bacillus thuringiensis crystal toxin. Bone, L. W.;K. P. Bottjer;S. S. Gill
  107. Genetics. v.155 Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Marroquin, L. D.;D. Elyassnia;J. S. Griffits;J. S. Feitelson;R. Aroian
  108. Int. J. Parasitol. v.28 Anthelmintics and ion-channels: after a puncture, use a patch. Martin, R. J.;I. Murray;A. P. Robertson;H. Bjorn;N. Sangster