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ABSTRACT

In the present paper, we present a method to solve a Fractional Bulk Transportation Problem
(FBTP) in which the numerator is quadratic in nature and the denominator is linear. A related
(FBTP) is formed whose feasible solutions are ranked to reach an optimal solution of the given
problem. The method to (ind these feasible solutions makes use of parametric programming wherein
a series of Ordinary Bulk Transportation Problems arc solved by the usual methods.

1. INTRODUCTION

Bulk Transportation Problem (BTP) is an important class of Transportation
Problems. It is linked with the supply of material from different sources to vari-
ous warchouses with the condition that each warehouse will draw its total re-
gquirement from only one source. This additional constraint named as bulk or
zero-one constraint arises often in practical situations. Applications of (BTP) have
been adopted In various areas like assigning software development tasks to pro-
grammers, the vehicle routing problems [5], the scheduling and facility location
problem [6] and the fixed-charge plant location models in which customer require-
ments must be satisfied by single plant [11, 12]. Bahman et al. [1], Hochbaum [4]
have developed algorithms for solving quadratic transportation problem having
the 0-1 character. The fractional programming problems have been studied exten-
sively by many researchers. Gutenberg [7] tackled the problem of optimizing pro-
ductivity of the material in industry plant, Mjelde [10] maximized the ratio of the
return and the cost in resource allocation problems, Kydland [8] on the other
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hand maximized the profit per unit time in a cargo-loading problem, etc. The
linear and nonlinear models of fractional programming problems have been
studied in {2, 8]. In this paper, we have considered a fractional bulk transporta-
tion problem in which the numerator 1s quadratic in nature and denominator is
linear. This problem has not been studied so far. An attempt is made to develop a
solution methodology for this problem. A Related Linear Fractional Bulk Trans-
portation Problem is formed whose basic feasible solutions are ranked to reach an
optimal solution of the given problem. Ranking of the basic feasible solutions of
the related problem tightens the interval containing the optimal value of the
given problem and then helps to find a solution to the given problem. A method
based on Dinkelbach's approach [3] is used to find these feasible solutions
wherein a series of ordinary Bulk Transportation Problems are solved by the usu-
al methods [13, 14].

2. THEORETICAL DEVELOPMENT

The mathematical model of the (FBTP) in which the numerator is quadratic and
denominator 1s linear is given by

(P-1): Minir;lize P(x) = p1(x)
e pa(x)

m n 1A T i 7L
DIDAIEIRI DI ST DIPWIE >
i=1j=1 1=1j=1 i=1j-1

mn n

DI FE

i=1 j=1

n N
where S:{xz{xij}|04ijxi-éai;ieI;inj:l,jeJ
j=1

i=1
; x;=00r1,G,J)e IxJ}

I= {1,2,---m}, the index set of the sources
J={1,2,---n}, the index set of the destinations, m <n,
b; >0, denotes the requirement of the destination J,

a; >0, denotes the availability at the source 1,

cij’ d

> ey and f; are all non-negative and are independent of the quantity
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h

transported from the i source to the ;¥ destination.

_ | 1, if the requirement of the j * destination is met by the ™ source
v 0, otherwise

Here we assume that P,(x) >0,V x e 8.

Remark 1: Since x; =0orl, V(i,j)elxdJ,the solution x={x;} of (P-1) will

be an extreme point of a hypercube I, x<1.

Remark 2: (1) A feasible solution of 2 (BTP) is written as a set of cells (7, j)'s
for which x; =1.

(2) A feasible solution of a (BTP) can exist, if

(1) for every b;, there exists an a;, such that b i<a;, and

T

G YbsYa
=1 =1

A (BTP) related to (P-1) is (P-2) given by

L _ @
Qg(x) Py (x)

m n
22y +dyep)xy
=
- m n
22 fi

i=1 =1
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Theorem 1. @Q(x) £ P(x), VxeS8S.

Proof. Since c;'s, d;'s and e;'s are all non-negative, clearly @(x) < P(x),

VxelS.

Remark 3: Let x; be an optimal solution to problem (P-2). Then @(x;) is the

lower bound on the optimal value P (say) of problem (P-1) because
Q(x) < P(x), ¥V xe8. Therefore, problem (F-2) provides the lower

bound, and hence is the bounding (BTP) for problem (P-1)

Theorem 2. Let S*(k>1) be the set of k™ best feasible solutions of (P-2)
yielding the value §@” and let
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P* =Min{P(x)| = € %}

If @*>Min{ P!, P?, .., Pk_l} =P?=P(x") (say), then P? is the optimal value
of P(x) and x is a global optimal solution of (P-1).

Proof. Since, P?= Min{ P!, P?,..., P*1 we have

P'>P9Vi=12 .., k-1 6))
As pt=Q* (By Theorem 1)
and Q"> P9 (By hypothesis)
Pk> pa 2)
Also, P'>Q'>Q*Vizk+l
> pe @)

Thus by (1), (2) and 3) P'>P9,vi=1,23,..

Hence x” is a global optimal solution of (P-1).

Theorem 3. If for a k(= 1), Q% = P*
then optimal value of P(x) is Min{ P*, P?, .., P*}.

Proof. Let Min{ P!, P?, .., P*}=P' = P(x"), say) = P'=P! vi=1,2, .. k.

Also, Piz@'>Q%izk+1
= p*
= p!
Piz P! vi.
p] is the optimal value of (P-1) and x° is its global optimal solution.
Theorem 4. If @ < Min{P*, P?, ..., P*}, then @*<P'<Min{P', P, .., P}
where P is the optimal value of P(x) in problem (P-1).

Proof. As P(x)zQ(x) ¥V xe S, we have

P¥> Qw

Since for w=k+1, @“> QF, we get
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P> @ Ywzk+1

Therefore, Min{P*, P*2 _ pV}> Q"
Also, by hypothesis Min{P?, P . PM Q"
By (4) and (5), we get P> Qk

Thus QF > P'< Min{P?, P? ..., P*}.

Remark 4: Problem (P-2) is a linear fractional programming problem whose op-

(P-3):

timal solution lies at the extreme point of the hypercube I .. x< 1.

m+i
These extreme points are finite in number and our algorithm moves
from one extreme point to another till such an extreme point is ob-
tained for which @* = P? = P(x"). Hence the algorithm will converge
in a finite number of steps. (P-2) is a Fractional Bulk Transportation
Problem. To solve (P-2), a Dinkelbach's [3] approach is made use of
wherein a series of Ordinary Bulk Transportation Problems are

solved. Consider the following Ordinary Bulk Transportation Prob-
lem.

F(i) = MIOIMIZE 4§ () 7@Qy(x)}, A € .

(P-3) is a parameterized form of problem (P-2). The following results due to
Dinkelbach provide motivation for a computational approach to solve (P-2) in
terms of the parametric programme (P-3).

Result 1: F(1)= MiI;iEIélize 1@ () -6y (x) }, L € R. is a strictly monotonically

decreasing function of 4.

Remark 5. F(1) cannot vanish. at more than one point, i.e,, F(1)=0 has a

unigue solution.

Result 2: F({1) is a concave function of 4.

Remark 6: As F(1) is a concave function of A over R, itis continuous over R.

Result 3: Forany e S, F(1) <0, where 1 = @)

(%)

Result 4: x°e S is an optimal solution of (P-2) iff x° is an optimal solution of

4
()
(6)
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Ql (x %) )
@ (x°)

(P-8) vielding value zero, where A=

3. METHOD TO SOLVE (P-2)

Initial Step: Solve F(4;) = Mh;i:?ize & (x) for 4, =0.

@ (xh

1)’

1

where x' is an optimal solution of F(4,).

Compute A, =

ol X

General Step: Solve F(4,)="M0I0IZe 10 (1) 2.0, (1)}, r22,

, «"7! being the optimal solution of F(4, ;)

If F(A,)=0,then x” is an optimal solution of (P-3) and hence an
optimal solution of (P -2); otherwise repeat the general step for

r=r+1.

On the basis of the theory developed above we give below an algorithm to solve (P
-1).

4. ALGORITHM TO SOLVE (P-1)

Step-1. Form the Related Bulk Transportation Problem (P-2)
Step-2. Using the Dinkelbach's, approach from the corresponding parameteric
programming problem (P-3)
Step-3 (a) Let X°={(7,1), (3, 2),... (5, n)}, where i%el, p=1,2,..,n be the
optimal solution of (P-2) with corresponding ohjective function value
Q-
(b) Let P! be the objective function value of (P-1) at x°.
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If P'=@Q!, stop; x° is the optimal solution of (P-1). Otherwise gener-

ate n mutually exclusive and exhaustive nodes K 11,K ;K ,IL defined

as

K} ={(if,1>, (i3.2),.... (51, p =1, G5, P)

where (i}), J) denotes the cell constrained to be included in the solu-

tion and (i}’, J) denotes the cells constrained to be excluded from the
solution.

(c) For each node K }, construct and solve the related linear fractional
(BTP) (R}), p=1,2,..,n. Bach R} is of the form of (P-2) and hence
can be solved as given in Step-2.

(d) Let x}) be the optimal solution of problem R}J with the corresponding

objective function value Z}, , p=12..n.

Step-4. Find 1\;Iini‘mize [Z;‘R}J is feasible] =Z11,1 (say) corresponding to the solu-

Step-5.

=12,..,n

: 1
fion x° .
u,

xllll = { (Z‘f71): (15:1)7 seey (il:)]_]i 124 _1): (Luol ) u’l) }
If Q=2 31, then xll‘,l is the alternate optimal solution of (P-2).

If zlll > @' then xi is second best feasible solution of (P-2). We call this

solution as x*.

At the second best solution x!, let the objective function value of (P-2) be

Q% and that of (P-1) be P2.

There are three possibilitiea:

(i) @%=P? then x! isthe optimal solution of (P-1).

Gi) Q%> P!, then x° isthe optimal solution of (P-1).

(i) Q%< Min(P!,P?), then we proceed to find the third best solution of
(P-2) by branching R’ .
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General Step Set ¢ =r and proceed to find the (r+1)" best feasible solution of
r-1

(P-2) by branching Rl';_ll with the corresponding optimal solution x" .
Generate new nodes K,, p=12,..,n. For each node construct and solve
the fractional bulk transportation problem R;"l, p=12,..,n. Let X,
p=1,2,...,n be their optimal solutions, with the objective function value Z,.

Find Min{Z ;' R, is feasible} = Z (say) corresponding to the solution ] .

Let @ be the objective function value of (P-2) at x] . If Q"' =Z", then x,’;

-u' ¥
is the alternative optimal solution of (P-2), otherwise x/ is the alternate opti-
mal solution of (P-2). We call this solution as x7.

Let p" be the objective function value of (P-1) at x". There are three possibili-
ties.
i @ "=P7, then x” is the optimal solution of (P-1).
() Q"=Min{P!, P? .., P} =P = P(x') (say), then x’ is the optimal solu-
tion of problem (P-1).
(iii) If Q" <Min{P', P% .., P"}, then repeat this step to find the next best

solution.

Remark 7. The algorithm is bound to converge in a finite number of steps becau-
se at each stage, the value of @7 increases and Min{P', P?, ..., P
either remains the same or decreases.

Remark 8: In the algorithm we need to solve a series of ordinary bulk transpor-
tation problems of the type (P-3). For the set in which a cell (i, ) is

constrained to be included in the optimal solution of (P-3), we know
that (i, j) will be the only cell in column ;. Consequently, column

j is dropped, a, , is modified to a, —bj, , and a smaller transporta-
tion problem is solved. This reduction in a,., further simplifies the
problem, since the cells (i, j) for which b; is greater than o, —bj

cannot be basic in any feasible solution and for such cells the cost is
taken as w . Thus the number of cells under consideration is also re-
duced.
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5. MUMERICAL EXAMPLE

Consider the following FBTP

S P (x
(P-1): Minimize P(x) = 1 (%)
xe8 PQ(DC)
m m o n m n
PDAFEFEIDIIETE DIDAFES
_i=1j=1 i=1j=1 i=1j=1
- m n
ZZ i *ij
i=1j=1
n m
Where S: x={x”}[0<ZbeU SGL,ZEI;ZxU =1,
i=1 i=1

jeJ;ij=Oorl,(i,j)eIxJ}

67

I=4{1,2,3},J=4{1234}, a,=10, ay=15, a3=18;b;=10, b,=10, by=5,

by=12. c,'s, d's, e;'s and f;'s are given in Table 1 below:
Table 1.
dy g
;i <15 5 0|7 0 213 4 0|2 0 1
3 4 1 1
4 0 0|4 3 0|5 1 1|2 1 0
2 1 3 1
5 1 2|3 1 2|4 0 115 1 0
fi_, «| 2 1 1 2

The related linear fractional BTP is (P-2) given by

_93- Minimize _@(x) @)
- s YT TR

m n

2. 2.(cy +dyey)xy

_ i=1j=1

m n

22 i %ij

i=1j=1
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_ By +Txy9 +3%13 + 2214 +4Xg) +4Xog +6X o3 + 20604 +Tgy +DXgy + 4 gy + 52Xy

3x11 +4x12 +x13 +x14 +2x21 +x22 +3x23 +x24 +2x31 +x32 +x33 +2x34

To solve (P-2) we consider the following BTP

(P-3:  Fa)= R ) 10,
Let A=4,=0.

Then F(iy)=F(0)="10imizeg o)
F(4,) is an ordinary BTP and is solved by any of the methods [11, 12].
The optimal solution of F(4;) is given by

2t ={1,2),(2,1),(3,3), 3, 4)
Which 15 the starting solution to solve (P-3).

Q(x") 20

Qo(x™) 9

Evaluate A, =

On solving F(4,) = Mir;ier;lize {@(x) — 2565 (x)}, we find that the optimal solution

is given by x* ={(L, 2), 2. 1), (2, 8), 3, 4} and F(i,)= -‘-33 £0.
An
Evaluate A5 = Ql(xi ) =2.
Qz(x )

On solving F(A3), we get its optimal solution as {(1, 2), (2,1), (2, 3), (3, 4)} and
Then x' ={{1,2),(2,1),(2,3),(3,4)} is the optimal solution of (P-2). We call it the
best feasible solution of (P-2). Corresponding objective function value of (P-2) is

_ Q1(x1) _9

Q' = -2.
Qa2

Objective function value of (P-1) at x' is given by



NONCONVEX BULK TRANSPORTATION PROBLEM 69

Here P!z Q! therefore we find the second best feasible solution of (P-2).
Form the nodes Kj={12)}, K}={12.21}, Kj={12),1),23)} and
K} ={(1,2),(2,1),(2,3),(3,4)} , where (i,j) denotes cell (;,j) is constrained to be

excluded from the solution and (i,j) denotes cell (7,j) is constrained to be in-
cluded in the solution.
Let R%,R;, R; and Ri be the related problems formed at nodes Kl,Ké,Kg

and K i respectively.

The optimal solution of R% is given by x% ={(1,1),(2,2),(2,3),(3,4)} and the corre-
sponding objective function value is given by 2 11 =2.22.

The optimal solution of Rj is given by x; ={(1,2),(2,4),(3,1),(3,3)} and the corre-
sponding objective function value is Z é =2.5.

The optimal solution of R% is given by xé =9{(1,2),(2,1),(3,3),(3,4)} and the corre-
sponding objective function value is Z é =2.22.

Problem Rj is infeasible,
Now, Min{Z!,Z1.Z}}=Z} =2} =222
Therefore the set of second best feasible solutions of (P-2) is given by {x},xé} )

RI=2.22
P? = Min{P(x]),P(x3)} = Min{3.22, 2.33} = 2.33 = P(x3).
Min{P',P?} = P? =2.33.

Here Q7% Pland Q*< Min{P' P*}.

Therefore we go on to find the third best feasible solution of (P-2). For that we
branch both R and R}. We first branch R;. The nodes obtained are as fol-

lows:

K?={12);@D)
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K3 ={12); (1), @2)}
K =1{12); 1)), (22,23
KI={12;11),(22),(23). (3,4}

Let R RZ,R:.R] be the problems formed at nodes K2, K2 K3 K; respec
tively.
Problems R and R} are infeasible.

The optimal solution of R22 is given by x;f ={(1,1)(2,4)(3,2)(3,3)} and the corre-
sponding objective function value 1s given by Z 22 =2.67.
The optimal solution of Rg‘ is given by ’C32 =1{(1,1)(2,2)(3,3)(3,4); and the corre-

sponding objective function value is Z5 = 2.57.
Min{ZZ,Z2} = Z7 = 2.57.

The problem formed at nodes obtained by branching problem Ré are infeasible.
Therefore the third best feasible solution of (P-2) is given by xs ={(1,1),(2,2),

(3,8),(3,4)} -
Objective function value of (P-2) at x32 is @°*=257.

Objective function value of (P-1) at x5 is P*®=3.84.
Min{P!,P?} = P? =2.33. Here @°> P%=Min{P! P}
Hence x; is the global optimal solution of (P-1).
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