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ABSTRACT

Regarding all methods of decision making as parts of the same subject, one is astounded to find that
the [ield speaks to the practitioners about multicriteria decision making with a multi—forked tongue,
different methods give different and conflicting outcomes even for very simple decisions. In this
paper, five well—known decision theories are described and used to work out a simple decision to
choose the best of three cars. The outcomes turn out not to be the same for all the methods, which is
troubling because one would expect unigue answers in decision making. Several "meta” criteria that
are essential for making a decision theory reliable are suggested. These criteria stand on their own
and do not require yet another decision theory to make a choice as to which decision approach is
best.

1. INTRODUCTION

We have a substantial concern that theories of multicriteria decision making do
not all yield the same best outcome. In fact, some of them can recommend as best,
the worst alternative of another approach. We begin by listing many of the multi-
criteria methods mentioned in the literature, but then confine our exposition to
five well-known ones. For these, we give a summary of their theoretical under-
pinnings and then work out the same example for all of them, and note the best
recommended outcomes. We found that they do not always agree and believe that
in different hands, still other outcomes might have resulted. The question is
whether there are some fundamental criteria that a decision theory must meet in
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order for its outcome to be “right” or “true” i some scientific and mathematical
sense. We give several suggested criteria at the end of the paper. We ask that we
might be forgiven by the versed practitioners of these methods, in case we have
not included all the latest refinements known about them. We have tried to be as
simple and direct as we could, to make the ideas accessible to a wide readership.

When the feasible set of alternatives of a decision consists of a finite number
of elements that are explicitly known in the beginning of the solution process, we
have an important class of problems called multicriteria evaluation problems.
Sometimes these problems are referred to as discrete multicriteria problems or
selection problems.

When the number of alternatives of a decision is uncountably infinite, the al-
ternatives are not specified directly, but defined in terms of decision variables as
usually done in single optimization problems like linear programming. The prob-
lem is called a continuous decision problem in which the alternatives are only
implicitly known. This kind of problem is referred as a multicriteria design prob-
lem or a continuous multicriteria problem. Here is a listing of many decision
techniques found in the literature [1, 2, 10, 17, 19, 28, 33].

(Multicriteria) Evaluation Methods: The outranking approach (Software:
ELECTRE) by Roy [23, 24]; other methods developed by some French-Belgian
School researchers are: ORESTE by Roubens [22] and Pastijn and Leysen [21],
PROMETHEE by Brans, Mareschal, and Vincke [3]. Multiattribute utility theory
(MAUT) by Keeney and Raiffa [11], The analytic hierarchy process (AHP) (soft-
ware: Expert Choice)by Saaty [27], The regime method by Hinloopen, Nijkamp
and Rietveld [9], The convex cone approach by Korhonen, Wallenius and Zionts
[16], The hierarchical interactive approach by Korhonen [12], The visual reference
direction approach (software: VIMDA) by Korhonen [13], The aspiration-level
interactive method (AIM) by Lotfi, Stewart, and Zionts [18].

The second group is very large, and is almost impossible to list. We mention
some of the better known approaches developed for multiple objective linear pro-
gramming.

Multiple Criteria Design Methods: Goal programming of Charnes & Cooper
[6], The method of Geoffrion, Dyer, and Feinberg [8], The method of Zi-
onts-Wallenius [38], The reference point method of Wierzbicki [34], The reference
direction method of Korhonen and Laakso [14], Pareto race of Korhonen & Wal-
lenius [15], Interactive weighted Tchebycheff procedure of Steuer and Choo [29,
30].

Among these methods, we deal with the five methods that is widely used: The
Analytic Hierarchy Process (AHP), Bayesian Analysis (BA), Data Envelopment
Analysis (DEA), Multiattribute Utility Theory (MAUT), and Outranking Methods
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of which we discuss ELECTRE.

All these theories assume independence among the alternatives of the deci-
sion. Some beg the question of independence by exercising behind-the-scene free-
dom to examine and condition thinking about the alternatives so they no longer
can be considered independent. What is needed here is a general theory for de-
pendence and feedback to enable one to deal with such complexity without com-
promising one’s basic assumptions. However, alternatives may be independent in
their function, but dependent in their structure. For example, pieces of gold may
be independent with respect to their value, which is high because they are gold,
but having mountains of gold depreciates the value of any single piece and makes
its value depend on how much gold is out there. It turns out that depending on
how one locks at it such considerations can lead to different outcomes in a deci-
sion. One cannot use uniqueness as criterion because unigueness requires an
awareness of other alternatives, thus violating the assumption of independence
which is essential.

2. FIVE WELL-KNOWN METHODS

We now briefly describe each method and apply it to the decision to choose a best
car from the set A4;, A,, A; and six criteria or attributes used to judge the

cars: purchasing price, performance, economy, value depreciation, maintenance
cost, overall appeal [37]. Information about the criteria and their ranges and
about the alternatives is provided in Tables 1 and 2. The information in Table 1
gives ranges of values of the criteria, but says nothing about their intrinsic impor-
tance.

Table 1. Six criteria and their ranges

Criteria Ranges

C, | Purchasing Price 2000 to 5000 (cash or financed price in dollars)

C; | Performance 100 to 150 (horsepower)

C, | Economy 20 to 30 (miles per gallon)

C; | Value Depreciation | 20 to 60 (percent of the purchase price recoverable 5 years from now)

C; | Maintenance Cost 1500 to 2200 (dollars per year)

Cs | Overall Appeal 1to 5 (where 1is ugly and 5 is beautiful)
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Table 2. Estimated values of alternatives for the criteria

o C Cs o C, Ce
A, 3000 120 30 40 1600 3
A, 3500 140 21 30 2000 4
A, 3600 130 25 50 1800 5

2.1 The Analytic Hierarchy Process (AHP)

The AHP, developed by Saaty [25, 26] in the early 1970's, is a general theory of
measurement. It is used to derive ratio scales from both discrete and continuous
paired comparisons in multilevel hierarchic structures. These comparisons may
be taken from actual measurements or from a fundamental scale of absolute
numbers, that reflects the relative strength of preferences, applied to homogene-
ous clusters of elements. The use of pivots from cluster to cluster inherently ex-
tends the scale through paired comparisons far beyond the 1 to 9 range. It has
found its widest applications in multicriteria decision making, in planning and
resource allocation, and in conflict resolution [31, 36].

The AHP is a systematic procedure for representing the elements of any
problem. It organizes the basic rationality by breaking down a problem into its
smaller constituent parts and then calls for only simple pairwise comparison
judgments to develop priorities in each hierarchic level. It provides a comprehen-
sive framework to cope with the intuitive, the rational, and the irrational and
emotional at the same time [4]. It 15 a method used to integrate perceptions and
purposes into an overall synthesis. The AHP does not require that judgments be
congsistent or transitive, The degree of consistency (or inconsistency) of the judg-
ments is calculated at each stage of the AHP process. The steps followed in the
AHP are:

Step 1. Define the problem and structure the hierarchy of that problem from the
top goal through intermediate levels of criteria, subcriteria, and actors to
the lowest level of alternatives. Most problems involve four separate hier-
archies: benefits, costs, opportunities, and risks.

Step 2. Construct a set of pairwise comparison matrices for each level in a hierar-
chy, and make all the pairwise comparisons. Use the fundamental scale of
absolute numbers from 1 to 9 to indicate the relative dominance with re-
spect to given property of one alternative over another used as the unit of
the paired comparison in a cluster of homogeneous elements. For alterna-
tives that are spread farther apart than indicated by the scale clustering
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using a pivot element is applied and thus the scale is essentially extended
as far out as needed to make the comparisons. Consistency in the judg-
ments is computed through the principal eigenvalue of each matrix and is
required to be in the order of 10% or less when compared with the corre-
sponding random value. A measure of overall hierarchic consistency is al-
so provided.

Step 3. Hierarchic composition is used to weight the eigenvectors in a level by the
eigenvector weights of the corresponding criteria and the sum is then ta-
ken over all weighted eigenvector entries in the next lower level of the hi-
erarchy. The resulting priorities are thus determined with respect to the
overall goal of the hierarchy which has the value one.

Step 4. The consistency of the entire hierarchy is determined by multiplying each
congistency index by the priority of the corresponding criterion and add-
mng. The result is then divided by the same type of expression using the
random consistency index corresponding to the dimensions of each matrix
weighted by the priorities of the corresponding criterion.

Step 5. For the sake of rank preservation the AHP uses a performance or dis-
tributive mode and a benchmarking or ideal mode. In the latter, the en-
tries of the eigenvector are all divided by the largest among them.

The AHP also involves a method to rate a large number of alternatives one at
a time with respect to a criterion by choosing the appropriate intensity from a
range of intensities (for example excellent, very good, good, average, below aver-
age, poor) for that criterion. One needs to pairwise compare the intensities rela-
tive merits with respect that criterion. The final rank of each alternative is ob-
tained as the sum of products of the priority of the criterion and the inténsity as-
signed to that alternative. Here too, there are two modes, one to preserve rank,
and one to allow rank to change. This approach, known as absolute measurement,
is not 1llustrated in this paper.

Now, we apply the AHP to the car example. Before proceeding, we note that
when there are several criteria measured in units of some known scale such as
dollars, the AHP requires that these criteria be brought together into a cluster
and the values of the alternatives are summed for all these criteria and then
normalized by the total value under the larger cluster.

To solve the car example by the AHP, we first combine the measureable crite-
ria and then normalize the measurement of the alternatives under those criteria
for which we have well defined scale measurements of the alternatives. We obtain
Table 3 and its decimal representation in Table 4. Tables 5 gives the pairwise
comparisong of the alternatives based on the ordinal values assigned with respect
to criterion Cg.
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Table 3. Combination of the criteria with same scale

C, and C; Cy C, C, Cs
A, 4600/15500 120/390 30/76 40/120 3
A, 5500/15500 140/390 21/76 30/120 4
A, 5400/15500 130/390 25/76 50/120 5

Table 4. Relative importance weights of the alternatives

C, and C; Cy C, C, Ce
A, 0.352 0.308 0.395 0.333 3
A, 0.322 0.359 0.276 0.250 4
A, 0.326 0.333 0.329 0.417 5

Table 5. Parwise comparison matrix for the alternatives with respect to the critenon, ‘overall appeal’

Cs A, A, Ag Priority vector
A, 1 1/2 1/3 0.163
As 2 1 1/2 0.297
Ag 3 2 1 0.540

(Inconsistency Ratio = 0.01)

Next, we establish priorities for the criteria through pairwise comparisons us-
ing the authors' judgments. The resulting priorities are used to weight the nor-
malized values of the alternatives as they are given above. The matrices of pair-
wise comparisons of the criteria are shown in Table 6, along with the resulting
vectors of priorities. The AHP does not use the information in Table 1.

Table 6. Pairwise comparison matrix for the criteria with respect to goal

C, and G, Cs Cs Cy Cs Priority
C, and C, 1 2 2 3 4 0.378
C, 1/2 1 1 2 3 0.217
Cs 1/2 1 1 2 2 0.201
Cy 1/3 1/2 1/2 1 2 0.123
Cs 1/4 1/3 1/2 1/2 1 0.081

(Inconsistency Rat10=0.01)

After applying the principle of composition of priorities, we obtain the following
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ranking: A,=0.435=[(0.378 x 0.352) + (0.217 x 0.308) + (0.201 x 0.395) + (0.123
x 0.333) + (0.081 x 0.163)], A,= 0271, and A;=0293. Car A, is the most pre-

ferred alternative.

2.2 Bayesian Analysis

Bayesian analysis is a popular statistical decision making process that provides
a paradigm for updating information in the form of possibilities [20]. It is based
on the premise that decisions involving uncertainty can only be made with the
aid of information about the uncertain environment of the decision. Bayesian
theory updates information by using Bayes' theorem, a statement in conditional
probabilities relating causes (states of nature) to outcomes. Outcomes are results
of experiments used to uncover the causes. Here, P(AlB)=P(A nB)/P(B).

P(AI B)is the probability of an event A, given the occurrence of a second event B,

P (B)is the unconditional probability of the second event B, and P(Am B)is the

probability of joint occurrence of event A and event B.

Bayesian theory reviges initial or prior probabilities of causes, known from a
large sample of a population, into posterior probabilities by using the outcome of
an experiment or test with a certain probability of success. Prior probabilities are
obtained either subjectively or empirically by sampling the frequency of occur-
rence of a cauge in a population. Posterior probabilities are based on the prior
probabilities and on both the outcome of the experiment and the observed reli-
ability of that experiment. That is, it is the ratio of a joint probability to a margi-
nal probability.

Bayesian analymis is a way to determine the impact of information, in the
form of probabilities, on decision-making outcomes. Usually, probabilities are only
known post hoc, if then, which makes this approach well suited for analyzing de-
cisions that have already been made, but 1s of questionable value for problems
other than those involving what may happen to an individual, given what has
happened in a population. The steps followed in Bayesian Analysis are:

Step 1. Separate the criteria into two categories: benefits and costs, those that
work to the advantage of the decision and those that work against it. Ob-
tain measurement for the alternatives with respect to each criterion. The-
se measurements are given as positive numbers for the benefits criteria
and negative numbers for the costs criteria.

Step 2. Standardize the data so that the relative ranges of the variable inputs
could be expressed on an absolute scale whose largest value is 1 for the
benefits and smallest value is -1 for the costs. In many problems where
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the alternatives are measured in dollars under all the criteria, normaliza-
tion is not used.

Step 3. Assign prior probability weights to the criteria. These probabilities must
sum to 1. However, these probabilities are determined with respect to an
overall goal, but represented as in medical cases.

Step 4. List the possible research outcomes (for details, see the example below)
and calculate their marginal probabilities.

Step 6. Assume that each of the research outcomes has been obtained. For each
research outcome:

a. Revise the prior probabilities.

b. Compute the expected payoff of each course of action under considera-
tion and select the act with the largest expected payoff.

¢. Multiply the expected payoff of the best course of action by the margi-
nal probability of the research outcomes.

Step 6. Sum the products of Step 5¢ (see example) to get the expected payoff of
the strategy that includes ordering research before taking final action.

Step 7. Subtract the cost of the research from Step 6 to get the expected net pay-
off of the strategy.

Step 8. Compare the expected net payoff of the strategy that includes research
with the expected payoff of the strategy of choosing among the alterna-
tives without research.

Step 9. Choose the strategy that maximizes the expected net payoff.

Note that when dollars are used, their results are an expected dollar value.
Thus one can compare the expected gain from step to step and determine whether
it is worth buying additional information to perform the next step.

Applying Steps 1 and 2 to the data given in Table 2 above we obtain Table 7.

Table 7. Standardized data

C, C, C, C, (o Cq
A, -0.83 0.86 1.00 0.80 -0.80 0.60
A,y -0.97 1.00 0.70 0.60 -1.00 0.80
A, -1.00 0.93 0.83 1.00 -0.90 1.00

We use the weights obtained from the AHP for the marginal probabilities of
the criteria instead of guessing them: C;=.334, C,=.196, Cy;=.185, C = .108,

Cy=.108, and Cg=.069. In this example, because price and maintenance are the

costs that have negative impacts, their expected values are subtracted from the
sum of the benefits to arrive at the final benefit/cost ratio.
The benefit/cost for each of the alternatives can now be assessed in relative
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terms. From this information, the best alternative is car A with a value of 0.121
=(.334 x -1.00) + (.196 x .93) + (.185 x 0.84) + (.108 x 1.00) + (.108 x -.90) +
(.069 x 1.00) obtained by multiplying the numbers in each row of Table 7 by the
weight of the corresponding criterion and adding. One similarly obtains the fol-
lowing values for 4; and A, in the same way: A,=0.118, A,=0.014. This is
done by prior judgment estimates for the criteria weights. By prior analysis, we
find that we should choose alternative A, if we have to make the decision im-
mediately without additional information. In Bayesian analysis, prior judgments
must be revised by incorporating new information. In this example, we begin our
consideration as to whether we should buy the research as new information by
structuring the problem in the form of the decision tree shown in Figure 1 to
compute the expected gain from carrying out the next posterior decision.

We identify three categories of possible research outcomes represented as
follows: serious problem (7' ; brakes, engine, gas tank etc.), moderate problem

(T ; seat belt, airbag, etc), and no problem (T’ ; fine). We reason that if the price
of car A; is $3000, the probability of observing T, in the research is 0.6, the
probability of observing T is 0.3, and the probability of observing T3 is 0.1.

These probabilities may be obtained from sampling research on the cars that
charges money for the probability information.

Table 8. Conditional probabilities of research results

Research Results

T, T, T,
C, 0.6 0.3 0.1
C, 0.2 06 0.2
C, 0.1 0.2 0.7
C, 0.5 0.3 0.2
C; 0.2 0.5 0.3
Cs 0.1 0.3 0.6

Similarly, we assign conditional probabilities to the possible research out-
comes for the other possible states (Table 8). We then multiply the conditional
probabilities by the prior probabilities to arrive at the joint probabilities (Table 9).
For example, our prior probability of 0.334 for C; times the conditional probabil-
ity of 0.6 for T, given C; results in a joint probability for C; and T, of 0.200,

and so on.




40 CHO AND KWON

Next, we revise our prior probabilities for the possible outcomes of implemen-
tation of car A,, using Bayes' theorem. For example, here are six of our calcula-

tions in the case of T1;

P(C;~T) _ 0.200 P(CynT) _ 0.039

P, T, = = =0.586 P(C,|T) = = =0.114
(@] P(T)  0.341 1TV P(T) 0341
P(Cs~T) 0.019 P(C,nT,) 0.054
P(C.|T)) = ERELLD EAp =0.056 P(C,|T)= 4 -1 =0.158
(Cs|T P(T)  0.341 ([T P(T) 0.341
P(CsnT) 0.022 P(CynT, 0.007
PC:|T) = CRIER VA =0.065 P(C4|Ty) = 621 _ =0.021
(C5|T P(T)) 0.341 (Cs|T) P(T) 0.341
Table 9. Joint probabillities of states and rasearch resulis
Research Results Marginal
T, T, Ty Probability
C, 0.200 0.100 0.023 0.334
Ce 0.039 0.118 0.039 0.196
Cs 0.019 0.037 0.130 0.185
Cy 0.054 0.032 0.022 0.108
Cs 0.022 0.054 0.032 0.108
Cq 0.007 0.021 0.041 0.069
M.P 0.341 0.362 0.297 1.000

We made similar calculations under the assumption that each of the other
two possible outcomes is observed in the research and entered the revised prob-
abilities in the decision tree (Figure 1). By multiplying the possible outcomes of
car A; by the revised probabilities, we found that the expected benefit of buying

car A; would be 0, 0.140, and 0.514 if T;, T, and T3 were observed respec-

tively in the research. The marginal probabilities of the possible research out-
comes are obtained by summing their joint probabilities (Table 9).

To arrive at the expected benefit of the research strategy, we multiply the ex-
pected benefit of the action 'we would take under each of the possible research
outcomes by the probability of observing the outcome and sum the products: (0
x 0.341) +(0.140 x 0.362) +(0.614 x 0.297) = 0.203 (Table 10). We now see that
alternative Aj is the best car under the prior decision, but alternative A, is the

best car under the posterior decision. This terminates the Bayesian decision ap-
proach.
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Table 10. Final results of Bayesian analysis

Car Prior Decision Posterior Decision
Ay 0.118 (T 0.000, (Ty) 0.140, (T 0.514 0.203
A, 0.014 (T,) 0.000, (T,)0.089, (Ts)0.376 0.144
A,y 0.121 (T 0.000, (T,)0.125, (Ty) 0.489 0.191
el 0.334 -0.83
0.118 o2 0.196 0.86
: 3 0.185 1
- cd 0.108 0.8
A 5 0.108 -0.8
Priox - 0 cé 0.069 06
Decision - - 1.000 0
0.118 ol 0.586 0.83
b 0.114 0.86
-0.245 3 0.056 1
ch 0.065 0.8
Posterior A
Decision _ 1.000 0
T1=0341 o 0.276 -0.83
pe 0.326 0.86
0.208 0.140 c3 0.102 1
T2 = 0.862 ¢4 0.089 0.8
&5 0.141 0.8
c6 0.058 0.6
1.000 0
el 0.111 0.83
0907 2 0.131 0.86
T3=0.297 0.514 o3 0.428 1
A - cd 0.074 0.8
cb 0.108 0.8
0
& - 1.000 D

Figure 1. Decision Tree for Car A

2.3 Data Envelopment Analysis (DEA)

DEA, originated by Charnes, Cooper, and Rhodes [6], is a method for analyzing the
relative efficiency of each alternative. DEA explicitly considers inputs and outputs
associated with each alternative. The basic elements of a DEA analysis are the alter-
natives, and input and output criteria. The assumption is that an increase in input
should produce increase in output. It is desirable to minimize inputs because they
require resources which incur costs. The approach used to develop the envelopment or
efficient frontier as the ground for ranking the alternatives is based on an additive
model that involves using a pair of dual linear programming models as shown below.
In particular, the following formulation 1s used: given m inputs, p outputs, and n al-
ternatives, let x;; correspond to the value of the ith input variable (¢ =1,2,---,m)

for the jth alternative (j=1,2,---,n) and let y,; correspond to the value of the
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kth output variable (k=1,2,---, p) for the jth alternative.
Primal Problem for the j th alternative:

J) n
Minimize - s;- Y &;

i=1 i=1

n
Subject to > A; yy—s; =i i=1,2-p
i=1

n,
—Z llxil—giz—xij i:1,2,---,m

=1

n

> Ai=1

i=1

A €5, 8;20 foralli
Dual Problem for the jth alternative:

b m
Maximize ) fy;- Y v;%5+0;
i= i=1
m
#D’ik—zvix,;;ﬁszo k=12 -,n
i=1 i=1
_/Lllé_l i:l’z’-..’p

Mo I

Subject to

-v; £-1 1=1,2,-.m

w; [free

Note that only one of the preceding problems needs to be solved for the jth

alternative.

In general, DEA only solves the dual problem in which the variables corre-
spond to prices for the inputs and outputs. Efficiency is defined to be the ratio of
the sum of the outputs to the sum of the inputs. It is assumed that no alternative
can be more than 100 percent efficient. Thus, we have constraints of the form:

P
Zﬂiyi.k
= <10 k=12--n

m

Z ViXin
i=1

By multiplying both sides of the inequality by the denominator, we obtain
linear expressions that become part of the dual problem. In the end, one obtains a
table in which the initial values of the objective function for all the alternatives
are 0, and the final values are obtained by solving the dual linear programming
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problems. The best alternative has the smallest final objective function absolute
value which means it 1s close to the efficient frontier.

Alternatives Initial value of Final value of
the objective function the objective function
Ay 0 2
Ao 0 Zs
AIL 0 zn

This method requires that one use three times the number of input and out-
put criteria to obtain non-zero outcomes and make better discrimination of effi-
ciency. We regret that using many alternatives would have made this paper con-
siderably longer and more complicated. To compare the outcome of the several
methods would have required that we use the same number of alternatives in all
our examples and that would have made the paper prohibitively long. In any case,
the example only illustrates how the method works. The outcome should not be
taken literally. Of course, many important decision problems deal with only a
small number of alternatives.

The information in Table II is divided into two categories, the inputs are cost
criteria C; and C; and outputs are benefit criteria Cy, Cy, Cy4, and Cg. The

inputs are price and maintenance; the outputs are performance, economy, depre-
ciation, and overall appeal. The inputs and outputs for the three cars are summa-
rized in Table 11.

Table 11. Input and output data for the three cars

Cars Inputs Qutputs
1 2 1 2 3 4
A, 3000 1600 120 30 40 3
A, 3500 2000 140 21 30 4
Ay 3600 1800 130 15 50 5

Using the dual linear programming formulation, we must solve the following
three problems, one for each car.
Dual Problem for Car Aj:

Maximize
Subject to

12041+ 305 + 4015+ 34— 3000v; —1600v, +
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14001+ 21 pg+ 30 g + 4 114 ~ 3500V, — 2000V, + 0, £ 0
13021+ 2505 + 5005+ 54— 3600V, —=1800v,+ ;< 0
izl 2l 1=1234 j=12

Dual Problem for Car A,:

Maximize 140u+21ug+30u5+ 44, —3500v,—2000v, + @,
Subject to 1204+ 304y + 4024+ 3124 —3000v, ~1600v,+ w5 <0
1401+ 2105+ 305+ 4114 — 3500V — 2000V, + 5 < 0
1304, +2505 + 505+ 51, — 3600V, -1800v,+ w0
.21, v;zl, 1=1,234 j=12

Dual Problem for Car Ay:

Maximize 1304+ 2545+ 50u5+5u,—3600v;—1800vs+ g

Subject to 1201+ 30uq+ 4015+ 31, —3000v; ~1600v4 + w5 <0
1404+ 215+ 3045+ 4444 —3500v; —2000v 4+ w3 2 0
1307+ 2505 +50u3+ 51, —5600v; —1800vy+ w3 <0
=1, vzl i=1,234 j=12

The 'problem Solver' in Microsoft EXCEL is used to solve these problems. For
illustrative purposes, the selected output is shown below. Specifically, the objec-
tive function values for all the cars are shown in Table 12.

Table 12. Objective function values for the three cars

Alternatives Initial value of the objective function | Final value of the objective function
Ay 0 0
Ay 0 0
A, 0 0

As seen in Table 12, the values of the objective function at the optimal solu-
tion for the three cars A4;, A,;, and Aj; are 0, 0, and 0, respectively. Thus we see

that in this example all cars A;, A,, and Aj; are efficient (lie on the efficient
frontier). That is, each car neither dominates nor is dominated by the other cars.
As a result, the value 0 is a measure of the distance of cars A;, A, and A,

from the efficient frontier. DEA does not determine the priority weight for the
alternatives, but only computes an efficiency measure for them. Here, the method
fails to show dominance among the alternatives and hence any alternative may
be considered a best choice.
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2.4 Multipte Attribute Utility Theory

MAUT, developed by Keeney and Raiffa [7, 11, 35], attempts to maximize a deci-
sion maker's utility or value (preference) represented by a function that maps an
object measured on an absolute scale into the decision maker's utility or value
relations. It is based on the following fundamental axiom: any decision-maker
attempts unconsciously to maximize a real valued function u =u(xy, x3, -+, x,,) of
the criteria x,, X, ---%,. The role of the researcher is to try to estimate this func-

tion by asking the decision-maker some well-chosen questions. It 1s assumed that
utility functions are monotonic and that, sometimes decision makers are risk
averse. A utility function may be monotonically increasing (that is, if x; is

greater than x;, x; is always preferred to x;) or monotonically decreasing (that
is, if x, isless than x;, x, is always preferred to x;).

In order to estimate a utility function, several points on the function curve
are determined by the decision maker. Consider the assessment of the component
utility function, u;(x;), for a particular criterion x;. The first step is to choose
two values of the given criterion i, x;¢ and =x;7, that correspond to lowest
{(worst) and highest (best) values of the it criterion, respectively. Thus, utility
theory requires that nonmeasurable criteria be measured on same numerical in-
dicator such as the number of people, the number of hours, the amount of money,
and even an ordinal rating from 1 to 5. For example, preference is then assumed

to be a linear function of these measurements.

The following utilities are assigned to these two values: w;(x;L)=0 and
u;(x;#)=1. The decision maker is then told that he has a probability (1-p) of
getting x,L and a probability p of getting x.,7 . This part is called the gamble.
He is then asked, "what least amount x (sure value you get no matter what)
would you accept for certain instead of taking the gamble?" This part of trading
off the gamble against the sure value offered is called a lottery. A very conserva-
tive risk averse individual would take the sure value, whereas a risk prone indi-
vidual may prefer the gamble. Once x (the sure equivalent) has been specified by
the decision maker, the utility of x 1s set equal to p (that is, u;(x)=p). The
probabilities are offered in a trial and error process. The assumption is that the
decision maker would make his or her choice at that probability. The equation the
gambler must consider is (1- p)u;(x,L) + pu;(x ;) = Q) w;(x) . Because wu;(xL)=0
and u;(x;#)=1, he or she must focus on the equation p=u;(x) with two un-
knowns, one on each side. The decision maker would then experiment with values
of x whose utility would yield a probability that makes the gamble worthwhile.
It would be the value where he is indifferent between the sure amount and taking
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the gamble. In the case of a monotonic increasing utility function, the probability
would be larger, the larger x is. However, if the monotonicity of the function is
damped (because of the law of diminishing value of returns), increase in p is
gradually diminished, and there is no incentive to use larger and larger values of
x . At some point, the decision maker would have no desire to take more risk.
That is what the lottery process attempts to capture for each particular decision
maker. If x is greater than the sure value, he goes for the gamble with the indif-
ference value p. If less, he takes the sure value. Lotteries and gambles are them-
selves a mathematically risky process because of the different subjectivity in-
volved in different situations, and gambles would be difficult for the decision
maker for things not easily convertible to monetary value.

To simplify life, some reasonable looking functions are used in practice. Assuming
a risk averse decision maker, one usually uses either w(x)=a-+blog(x+c) for a
monotonically increasing utility function or w(x)=a+blog(c—x) for a monotoni-
cally decreasing utility function.

Utility independence is one of the central concepts in MAUT. Various utility-
independence conditions imply specific forms of utility functions. However, only
additive and multiplicative forms are generally used in practice. An additive util-
ity function can be represented by wu(xy, -+, %) = Ry () ++ -+ Ry, (%), where
w(xy, -+, Xp) ranges from O to 1 and the component utility functions u;(x;) also
range from 0 to 1, and the scaling constants %; are positive and sum to one. A

multiplicative utility function has the form

mn

L+ ku (g, -, %) = [ [[1+k Rsuey(xp)]
i-1

where the functions u;(x;) are restricted as in the additive case. However,

the scaling constants k; may be greater or less than one, and the constant k& is

chosen to satisfy the equation: 1+k = H;’il[l +kE;]

To assess the scaling constants k;, the decision maker first chooses a crite-
rion against which the other criteria will be compared. Suppose that the tth cri-
terion is chosen. In order to compare another criterion ; with the ith criterion,
the decision maker is presented with the following two alternatives: The first al-
ternative has the ith criterion at its best value and all of the remaining criteria
at their worst values. The second alternative has all of the criteria at their worst
values. The level of the jth criterion in the second alternative is improved until

the decision maker iss indifferent between the two alternatives. The steps fol-
lowed in MAUT are as follows:
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Step 1. Identify the relevant criteria (attributes).

Step 2. Assign quantifiable variables to each of the attributes and specify their
restrictions.

Step 3. Select and construct utility functions for the individual attributes.

Step 4. Synthesize the individual utility functions into a single additive or multi-
plicative utility function.

Step 5. Evaluate the alternatives using the function obtained in Step 4.

Step 6. Choose the alternative with the largest utility value.

We now apply the foregoing steps to our car decision example. We use the
logarithmic form given above for the utility functions.

Ci: uy(xy) ==-1.878+0.442In (3670 —x1), Cg: wug(xg) =-34.79+7.1431n (x5 +10)
Cg: tglxg) =-35.81+84ln(x;+50), C,: uylxy) =-34.79+7.143In(x,+100)
Cy: uglxs) =-82.9+10In(6000-x5), Cg: ug®) =1, ug(3) =0.5,us(4)=0.7

Here, for example, we determine the parameters for C; (Price is monotoni-

cally decreasing utility function) by using Table I to construct a lottery (1/2,
2000; 1/2, 5000) and ask the gquestion: what value of Price, x,, makes this lot-

tery indifferent to the sure value x;7 The answer is x; = 3500. Finally, we con-
struct the function wuy(x)) =a+bln(c—x,) passing through the three points
(14 (2000), 2000), (u;(5000), 5000), and (u;(3500), 3500). The result is the
function: w,(x;) =-1.878+0.442In(3670 —x,;). Applying the same procedure to

the remaining five criteria with the help of Table I, we obtain the remaining
equations. We next use Table II to substitute values of each alternative and crite-
rion in the relevant equation to obtain the utilities of the alternatives for each
criterion as shown in Table 13.

Table 13. Utilties of alternatives

A, A, A
C, 0.72 0.54 0.50
C, 0.40 0.80 0.60
C, 1.00 0.02 0.40
C, 0.40 0.20 0.70
C; 0.91 0.40 0.68
Cs 0.50 0.70 1.00

Next, we must evaluate the scaling constants k;(z =1,2,---,6). The criteria’s
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ordinal preference is as follows: Price (k,) > Performance (k5) > Economy (kg) >
Depreciation (k,) > Maintenance (%5) > Appeal (kg). Thus, for example, &, is
assessed by comparing the lottery:

D (1-p)
(3000, 140, 30, 50,1600, 5) (3600, 120, 21, 30, 2000, 3)

with the sure value

1
{(3000, 120, 21, 30, 2000, 3)}

We explained above a lottery with respect to a single variable x. Here we
have a similar value for a function of several variables: (1- p)u(x;L, -, x,,L)

wpulaH, o x, ) =u(xy - x,) . Thatis, p=u(xy - x,). We must use a bundle of
variables, instead of a single variable, in our lottery. We take p=k;. Suppose
that k; = 0.25, what bundle makes the decision maker indifferent between taking

a lottery giving the best possible consequences with probability 0.25 and the
worst possible consequences with probability 0.75, and the sure value giving the
worst possible consequence for all attributes except x; which is taken at its best

value while the other variables are taken at their worst value? Once k; is known,
the other scaling constants are determined from the following equations succes-
sively.

R11(3300) = kyu,(140)

koug(140) = kaug(30)

kyu3(30) = k4yu,(50)

ke (50) = ksus(1600)

ksus(1800) = kgug(5)

The outcome is: k= 0.25, ky= 0.19, k3= 0.15, k,= 0.21, k5= 0.16, and
kg=0.1.

Since Zilki =1.06 =1, we can use the additive utility function approach
from which we obtain for the utilities of the alternatives: u(A;)=0.686,
w(As)=0.466, u(As) =0.655. Thus, the best alternative that provides the
maximum utility is car A;. It is followed by car A;, and then by car A,. If the

scaling constants were much greater or much less than 1, we would have used a
multiplicative utility function.
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Multiattribute value theory (MAVT) is a new version of multiattribute utility
theory. Generically, it assigns values from a ratio scale that fall in a range (for
example, 0 to 100) to the criteria and similarly assigns values to the alternatives
from appropriate ranges chosen for each criterion. Unlike MAUT, it has come to
recognize that criteria weights are important in decision making. However, its
alternatives are still measured on interval scales.

2.5 Qutranking Method (ELECTRE)

Outranking method (ELECTRE), developed by Roy [23, 24, 32], is based on
MAUT principles with the motivation to umprove efficiency without affecting the
outcome while considering less information. It is a procedure that sequentially
reduces the number of alternatives the decision-maker is faced with in a set of
non-dominated alternatives.

The concept of an outranking relation S is introduced as a binary relation
defined on the set of alternatives A. Given two alternatives A; and A;, 4;

outranks A;, or A;SA;, if given all that is known about the two alternatives,
there are enough arguments to decide that A; is at least as good as A;. The

goal of outranking methods is to find all alternatives that dominate other alterna-
tives while they cannot be dominated by any other alternative. To find the best
alternative, outranking also requires knowledge of the weights of the criteria.
Each criterion C;eC is assigned a subjective weight w;, and every pair of al-

ternatives A; and A; is assigned a concordance index c(A;,A;) given by:

1
2 We

c(4;, A= 7
Z wy, g (AD2gR(A D
k=)

where the sum of the criteria weights in the numerator is taken only for tho-
se criteria where the values of A; dominate the values of A; in Table II. A dis-

cordance index d(A; A;) is also calculated and is given by:

0 ifgr(A)z gr(Aj) for all k,
d(AnAp) =11 _
Emax{gk(Ai) —gr(Aj)}, otherwise.

where, 6 =max{g,(A;)—gr(4;)}. Here, the criteria weights are not used but
only normalized values in each row of Table II. These are the g,(4;). Once the

two indices are known, an outranking relation S is defined by:
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c(A,Ap =,

A;SA; if and only if .
d(Ap,Aj<d,

where é and d are thresholds set by the decision maker. A problem with

this discordance index is the requirement that criteria levels be quantifiable. If

that is not the case, then a discordance set D; is defined for each criterion ; for

all the ordered pairs (xj, y;) such that if g;(4)=x; and g;(B)=x; then the

outranking of B by A is refused. The outranking relation is defined by:

C(Ai,Aj) = é,

A;S4, if and only if { .
(g;(A).g;(A))e D; V.

Given the outranking relation it is now possible to find the set of alternatives
N c A for which:

VBe A-N JA e N such that ASB
VA, BeN,ASB.

The outranking relation determines the set of non-dominated alternatives.
The alternatives in N form the kernel of the graph defined by the alternatives
(vertices) and the outranking relation (edges). Thus, if alternative A4; outranks

alternative A;, then a directed arc exists from A; to A;: A; = A;. The steps
followed in the Outranking Method are as follows:

Step 1. Obtain the values of the criteria.

Step 2. Construct the outranking relations by following the concordance and dis-
cordance definitions, and construct a graph representing the dominance
relations among the alternatives.

Step 3. Obtain a minimum dominating subset by using the minimum concox-
dance and maximum discordance indices (see example below). If a kernel
exists, it is chosen as the minimum dominating subset.

Step 4. If the subset has a single element or is small enough to apply value
judgment, select the final decision. Otherwise, Steps 2 through 4 are re-
peated until a single element or small subset exists.

We now use the information in Tables 1 and 2 to apply this method. Instead
of assigning the criteria subjective weights, we took the liberty to borrow their
derived weights from the paired comparison approach of the AHP. They were
C,=.334, Cy=.196, C;=.185, C,=.108, C5=.108, and C;=.069. Normalizing

the rows of Table II. we have Table 14.
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Table 14. Relative importance of alternatives
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A, A, A,
C, 0.351 0.327 0.322
Cy 0.308 0.359 0.333
Cq 0.395 0.276 0.329
C, 0.333 0.250 0.417
C; 0.352 0.315 0.333
Ce 0.250 0.333 0.417

For the concordance indices we have (f there are ties between the alterna-
tives, they would receive one half the weight): ¢(1, 2) = .334 + .185 + .108 + .108

I -+

Table 15. The concordance matrix

785, (1, 8) =.334 + .185 + .108 = .627, ¢(2, 1) =.196 + .069 = .265, c(2, 3) = .334
196 = 530, c(3, 1) =.196 + .108 + .069 = .373, (3, 2) = .185 + .108 + .108 + .069
470. The complete set of indices is represented by the concordance matrix
shown in Table 15.

A, Ay Ag
A 0.735 0.627
A, 0.265 0.530
Ay 0.373 0.470

For the discordance indices we have: d(1, 2): C2=.359 - .308 = .051, C6 = .333
-.250 = .083, d(1, 3): C2 = .333 - .308 = .025, C4 = 417 - .333 = .084, C6 = .417
- .250 = .167, d(2, 1): C1 = .351 - .327 = .024, C3 = .395 - .276 = .119, C4 = .333
- .250 = .083, C5 = .352 - .315 = .037, d(2, 3): C3 =.329 - .276 = .053, C4 = 417
- .250 = ,167, C5 = .333 - .315 = .018, C6 = .417 - .333 = .084, d(3,1): C1 = .351
- 322 = 029, C3 = .395 - .329 = 066, Cb = .352 - .333 = .019, d(3,2): C1 = 327
-.322 = 005, C2 = .359 - .333 = .026. For d(1, 2), the discordance index would be
0.083 and for d(3, 1), the index would be 0.066. The complete set of indices is rep-
resented by the discordance matrix shown in Table 16.

Table 16. The discordance matrix

A, Ay Ay
A - 0.083 0.167
A,y 0.119 - 0.167
A, 0.066 0.470
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Now suppose that the decision-maker has specified a minimum concordance
of 0.60 and a maximum discordance of 0.40, that is, ¢(4;A4; >0.60 and

d(4;, A;) <0.40. With this specification the graph can now be constructed. The

directed paths which appear in the graph are determined by the set of indices
that simultaneously satisfy these two requirements. These indices are: (A;, 4,)

and (Al ) A3)

The resulting graph is shown below in Figure 2. Using the graph, the deci-
sion-maker can determine the optimal choice by eliminating of nodes. The direc-
tion of the arrow determines which alternative outranks others. As in the figure,
alternative A, outranks alternatives A, and As, and hence, it is the best car

By this method, however, we cannot say that alternative A, outranks or is

to choose.

Figure 2. The resulting graph

more preferred to alternative A;. Further, we cannot say how much alternative
A, outranks alternatives A, and A;. The method is useful for selecting the

best set of alternatives that outranks the others and finding the best alternative
in that set.

3. OBSERVATION AND CONCLUSION

In the foregoing example, three of the methods, the AHP, MAUT, and Outranking
(ELECTRE) gave alternative A; as the best choice. Bayesian Analysis under

prior decision gave Az as best and A, as best, under posterior. All of the three

alternatives was considered as best in case of DEA. Thus, there is nothing shown
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here that assures one that alternative A, is really and truly the best one. What

do we conclude from all this? In addition, seeing the conflicting outcome of all
these best known methods one wonders what the statistics would be had we ap-
plied all the methods to many examples. Clearly something must be done to nar-
row down the practicality of theories of decision making to the level of usefulness
of scientific theories in physics, chemistry, astronomy, and biology.

We have often heard people voice the opinion that they themselves were at-
tempting to take the most desirable feature of each method in order to create a
new theory that includes all these features. This reminds one of the counterex-
ample often given in systems theory, that one cannot construct the best car by
taking the best engine from omne car, the best body from a second car, the best
brakes from a third car, the best upholstery from a fourth car, the best wheels
from a fifth car, and the best paint job from a sixth car. A good theory must stand
on its own assumptions and operations and needs to be validated according to its
mathematical rigor, its practicality, and general usefulness, in order to stand the
test of time. The sophistication and mathematical intricacy of a theory are no
guarantee of its validity and truthfulness.

There are several types of numerical scales that may be considered to rank
criteria and alternatives in decision analysis. There are ordinal scales, invariant
under strictly monotone increasing transformations; interval scales, invariant
under positive linear transformations; ratio scales, invariant under positive
similarity transformations; and absolute scales, invariant under the identity
transformation. If they all lead to the same result it would not matter which is
used and the distinction among scales would be superfluous. When there are mul-
tiple criteria, however, one cannot simply use any scale since it must be possible
to combine the rankings with respect to the different criteria, and not every scale
allows the arithmetic operations needed to do the combining. Ordinal numbers,
for example, are not serious contenders in this process. In addition, there are
situations of interdependence among the alternatives that narrow the choice of
scale further. We need to consider other numerical scales and whether arithmetic
operations on them results in meaningful outcomes. Note that one cannot multi-
ply numbers from an interval scale because the result is not an interval scale.
Thus, (ax;+b)(axs+b)=a2x®+ab(x;x5)+b2 which does not have the form

ax+b. One can take the average of interval scale readings but not their sum.
Thus, (axy+b)+ (axs+b)=a(x; +xs)+ 20, which does not have the form ax+b.

However, if we average by dividing by 2, we do get an interval scale value. Simi-
larly, we can multiply interval scale readings by positive numbers whose sum is
equal to one and add to get an interval scale result, a weighted average. For a
ratio scale, we have ax;+axy = a(x; +xs5) = ax3 which belongs to the same ratio

scale, and ax,= abx,x,= cx,x,= cx3 which belongs to a new ratio scale. How-
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ever, ax;+bx, does not define a ratio scale and, thus, we cannot add measure-

ment from different ratio scales.

It is clear that we need a higher level of abstraction to pass a new kind of
judgment on what should be considered as the best outcome. What we need is a
set of high level of criteria that determine the merits of these methods in produc-
ing a ranking of the alternatives. But, then we have a new problem, what method
do we use to decide which 1s of these methods is best? One thing seems clear, and
1t 1¢ that the legitimacy of the numbers used in these methods and their manipu-
lations are central in deciding whether what they do is meaningful. We believe
that any decision method must meet at least five criteria. First, it should make it
possible to deal with a decision problem that is complex and intricate as real life
problems present themselves. Second, a method should be able to transcend ex-
isting ways of measurement by dealing with intangible criteria such as political
merit and artistic ability. The scales derive for intangibles must parallel the de-
rivation and use of measurement of tangibles in scientific practice. Third, since
decisions must survive the hazards and risks of the unknown future, a decision
theory should be potentially capable of making correct predictions. Otherwise, the
best decision of today will sour tomorrow. Fourth, all these methods assume inde-
pendence of criteria and alternatives in their formulation. The question is which
ones among them can be generalized and adapted for dependence and feedback
without compromising their existing theory. Real life problems involve all kinds
of dependencies that cannot be set aside by always assuming independence. Fifth
and finally, a decision theory must intrinsically be amenable to group decision
making without assuming that consensus is always the way to combine group
decisions. The method should be able to capture the power and knowledge of vari-
ous individuals involved and factor them in a mathematically precise way into
their method. We believe that there is sufficient substance in these observations
to make it critical for anyone concerned with decision making to look deeper into
these methods.
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