지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test

  • 한일영 (SK건설주식회사 연구소 수석연구소) ;
  • 서일원 (서울대학교 지구환경시스템공학부)
  • 발행 : 2001.10.01

초록

본 연구에서는 단일절리에서 2상유체 동시거동을 해석하기 위해서 2차원 유한차분 수치모형을 개발하였다. 개발된 모형은 압력에 따른 점성의 변화가 포화도에 따른 상대투과계수의 변화를 절리간극의 크기별로 고려할 수 있다. 수치기법으로는 IMPES해법을 적용하여 물과 가스의 압력변화량과 포화도를 차례로 구하였다. 개발된 수치 모형에 이용할 상대투과계수의 특성식 도출을 위해서 일곱가지 경우의 평판모형실험을 실시하였다. 실험으로부터 도출된 상대투과계수 특성곡선은 기존의 경험식으로는 표현되기 어려웠으며, 따라서 새로운 경험식으로 로지스틱 방정식을 제시하였다. 이 방정식은 간극의 크기가 포함된 매개변수를 사용하였기 때문에 임의의 절리 간극크기의 적용이 가능한 형태이다.

A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

키워드

참고문헌

  1. Aziz, K. and Settari, A (1979). Petroleum reseruoir simulation. Applied Science publishers Ltd. pp. 257-259
  2. Bear, J. and Berkowitz, B. (1987). Groundwater flow and pollution in fractured rock aquifers. in Developments in Hydraulic Engineering. P. Novak (ed.), Elsevier Appl. Science PubL, 4, pp. 175-238
  3. Brooks, R.H. and Corey, A.T. (1964). Hydraulic properties of porous media. Colorado State University Hydrology paper No.3, March
  4. Dana, E., and Skoczylas, F. (1999). 'Gas relative permeability and pore structure of sandstones.' Int. J. of Rock mech and Mining Sci, pp. 613-625 https://doi.org/10.1016/S0148-9062(99)00037-6
  5. Gale, J.E, Rouleau, A. and Atkinson, L.C. (1985). 'Hydraulic properties of fractures. Memories. Hydrogeology of rocks of low permeability.' : International Association of Hydrogeologists (Tucson, Ariz.) pp. 1-11
  6. Hirasaki, G.J. and O'Dell, P.M. (1970). 'Representation of reservoir geometry for numerical simulation.' Trans. SPE of AIME, Vol. 249, pp. 393-404 (SPEJ)
  7. Louis, C. (1974). Introduction of hydraulics of rock. Bull. Rock Geol. Min. Ser. 2, Sec 3, NO.4
  8. Marie C.M. (1981). 'Multiphase flow in porous media.' Gulf publshing company
  9. Merrill, L.S. (1975). Two phase flow in fractures. Ph. D. dissertation. Univ. of Denver, Denver, Colo
  10. Romm, E.S. (1966). Fluid Flow in Fractured Rocks. Nedra Publishing House, Moscow, Translated from Russian by W.R. Blake
  11. Sheldon, J.W; Zondek, B., and Cardwell, W.T.(1959). 'One-dimensional, incompressible, non-capillary, two, phase fluid flow in a porous medium.' Trans. SPE of AIME, Vol. 216, pp. 290-296
  12. van Genutchen, M.T. (1980). 'A closed From Equation for predicting the hydraulic conductivity of unsaturated soils.' Sci. Soc. Am J. Vol. 44, pp. 892-898
  13. Valko P. and Economides, M.J. (1986). Hydraulic fracture mechanics. John Wiley & Sons