Abstract
It is difficult that web documents are classified with exact user intention because existing document classification systems are based on word frequency number using single keyword. To improve this defect, first, we use keyword, a query, domain knowledge. Like explanation based learning, first, query is analyzed with knowledge based information and then structured user intention information is extracted. We use this intention tree in the course of existing word frequency number based document classification as user information and constraints. Thus, we can classify web documents with more exact user intention. In classifying document, structured user intention information is helpful to keep more documents and information which can be lost in the system using single keyword information. Our hybrid approach integrating user intention information with existing statistics and probability method is more efficient to decide direction and range of document category than existing word frequency approach.
기존에 단어의 빈도수를 근간으로 하는 문서 분류 시스템에서는 단일 키워드를 사용하기 때문에 사용자의 의도를 충분히 반영한 문서 분류가 어려웠다. 이러한 단점을 개선하기 위하여 우선 기존의 설명에 근거한 학습방법(explanation based learning)에서 한 예제만 있어도 지식베이스 정보와 함께 개념을 학습할 수 있다는 점에 착안하여 먼저 사용자 질의를 분석, 확장한 후 사용자 의도 트리를 생성한다. 이 의도 트리의 정보를 기존의 키워드 빈도 수에 근거한 문서분류 과정에 제약 및 보충 정보로 사용하여 사용자의 의도에 더욱더 근접한 웹 문서를 분류할 수 있다. 문서를 분류하는 측면에서 볼 때 구조화된 사용자 의도 정보는 단순한 키워드의 한계를 극복하여 문서 분류 과정에서 특정 키워드 빈도수의 임계값을 결정함으로서 잃게되는 문서 및 정보를 좀더 보유하고 재적용할 수 있게 된다. 질의에서 분석, 추출된 사용자 의도 트리는 기존의 통계 및 확률을 사용한 문서 분류기법들과 조합하여 사용자 의도정보를 제공함으로서 카테고리의 형성 방향과 범위를 결정하는데 높은 효율성을 보인다.