Influence of Surface Free Energy on Mechanical Interfacial Properties of Resol-type Phenolic Resin/Poly(vinyl alcohol) Blend System

레졸형 페놀수지/폴리비닐알콜 블랜드계의 표면 자유에너지 변화가 기계적 계면특성에 미치는 영향

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 정우영 (한국화학연구원 화학소재연구부) ;
  • 박병기 (전북대학교 섬유공학과)
  • Published : 2001.10.01

Abstract

In this work, surface free energies and mechanical properties of resol-type phenolic resin (RPR)/poly(vinyl alcohol) (PVA) blends were studied. The intermolecular interaction between RPR and PVA was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Contact angle measurements were performed using a three-liquid acid-base method to determine the surface free energies of RPR/PVA blends. Interlaminar shear strength (ILSS) and critical stress intensity factor ( $K_{IC}$) tests were carried out to exploit the effect of surface free energies on the mechanical properties of blends under study. The morphologies of he fracture surface of RPR/PVA blends were investigated by scanning electron microscopy (SEM). FT-IR results showed the formation of hydrogen bonds in RPR/PVA blends. Surface free energy was a maximum value when PVA content was 5 vl% in RPR. Both nonpolar and polar components contributed to an increase in the surface free energy. ILSS and $K_{IC}$ increased with the addition of PVA, and then decreased when PVA content was higher than 5 vol%. Morphological results showed that the fracture surface area increased with the increase in PVA content, which was in good agreement with the mechanical properties of RPR/PVA blends.s.

Keywords

References

  1. Phenolic Resins A. Knop;L. A. Pilato
  2. Macromolecules v.20 no.226 M. M. Coleman;C. J. Serman;P. C. Painter
  3. Macromolecules v.30 no.5443 C. C. M. Ma;H. D. Wu;P. P. Chu;H. T. Jen
  4. J. Appl. Polym. Sci. v.79 no.631 C. C. M. Ma;F. Y. Wang;H. J. Lin;S. H. Wu;J. C. Yang
  5. Macromolecules v.24 no.5630 P. C. Painter;J. F. Graf;M. M. Coleman
  6. J. Polym. Sci. v.36 no.1721 C. C. M. Ma;H. D. Wu;C. T. Lee
  7. Interfacial Forces and Fields: Theory and Applications S. J. Park;J. P. Hsu(ed.)
  8. J. Colloid Interface Sci. v.226 no.60 S. J. Park;M. S. Cho;J. R. Lee
  9. J. Colloid Interface Sci. v.228 no.90 S. J. Park;S. G. Lee
  10. Polymer v.24 no.245 S. J. Park;J. S. Jin;J. R. Lee;P. K. Pak
  11. Physical Chemistry of Surfaces A. W. Adamson
  12. J. Polym. Sci. v.38 no.138 W. Y. Chen;Y. Lin;K. P. Pramoda;K. X. Ma;T. S. Chung
  13. Physical Chemistry of Adhesion D. H. Kaelble
  14. Macromol. Chem. Phys. v.201 no.470 Y. Hu;P. C. Painter;M. M. Coleman
  15. Macromolecules v.32 no.3097 H. D. Wu;P. P. Chu;C. C. M. Ma;F. C. Chang
  16. Chem. Rev. v.88 no.927 C. J. van Oss;M. K. Chaudhury;R. J. Good
  17. Angew. Makromol. Chem. v.160 no.17 V. Choudhary;E. Fitzer;M. Heine
  18. J. Polym. Sci. v.36 no.2327 K. X. Ma;T. S. Chung;R. J. Good
  19. Polymer J. v.31 no.28 S. J. Park;W. B. Park;J. R. Lee
  20. J. Mater. Sci. v.35 no.1901 S. J. Park;M. H. Kim
  21. J. Colloid Interface Sci. v.206 no.29 S. J. Park;J. B. Donnet
  22. Carbon-Carbon Composites G. Savage
  23. Key Eng. Mater. v.121 no.329 R. H. Martin
  24. Phil. Trans. R. Soc. v.221 no.163 A. A. Griffith
  25. J. Mater. Sci. v.25 no.2737 C. L. Conner;K. T. Faber
  26. Stress Concentration Factors R. E. Peterson
  27. Polymer v.37 no.4667 S. Zheng;J. Wang;Q. Guo;J. Wei;J. Li
  28. Handbook of Composites L. S. Penn;T. T. Chiao;G. Lubin(ed.)