Shape Optimization for the EMF Harmonics Reduction of PM Type Synchronous Generators

영구자석 계자형 동기발전기의 고주파 저감을 위한 자기회로 최적설계

  • 김영균 (창원대 공대 전기학과 대학원) ;
  • 이재건 (창원대 공대 전기학과 대학원) ;
  • 임양수 (창원대 공대 전기학과 대학원) ;
  • 강규홍 (창원대 공대) ;
  • 홍정표 (창원대 공대 전기학과) ;
  • 장기찬 (창원대 공대 전기학과 대학원)
  • Published : 2001.10.01

Abstract

This paper presents the shape optimization to minimize the BEMF(Back Electro-Motive Force) harmonics of PM type synchronous generators. RSM(Response Surface Methodology) is well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. In this paper, RSM is used to find the optimal solution. The 2D-Finite Element Method is used to obtain the observer data of the BEMF and SQP(Sequential Quadratic Problem method) is used to solve the constrained nonlinear optimization problem.

Keywords

References

  1. K. Ide et al., 'Higher harmonics calculation of synchronous generators on the basis of magnetic field analysis considering rotor movement,' IEEE Trans. Magn, Vol. 28, pp.1359-1362, 1992 https://doi.org/10.1109/20.123944
  2. J.P. Hong et al., 'Pole shape optimization for the EMF harmonics reduction of synchronous generatos', Nonlinear Electromagnetic Systems, IOS Press, pp. 108-111, 1996.
  3. Y. K. Kim, Y. S. Jo, J. P. Hong, J. Lee,'Approach to the shape optimization of racetrack type high temperature superconducting magnet using response surface methodology', Cryogenics, vol. 41/1, pp.39-47, 2001. https://doi.org/10.1016/S0011-2275(01)00046-7
  4. 大川 光吉, 永久磁石回轉機の設計, TDK CORPORATION, 1984
  5. R. H. Myers, Response Surface Methodology, John Wiley & Sons, 1995
  6. F. Gillon;P. Brochet, 'Screening and response surface method applied to the numerical optimization of electromagnetic devices', IEEE Trans. Magn., vol. 36, No. 4, pp. 1163-1167, Jul. 2000 https://doi.org/10.1109/20.877647
  7. R. Rong;D.A. Lowther, 'Applying reponse surface methodology in design and optimization of electromagnetic devices', IEEE Trans. Magn., vol. 33, No. 2, pp. 1916-1919, Mar. 1999 https://doi.org/10.1109/20.582665
  8. J.S. Arora, Introduction to Optimum Design, McGraw Hill, 1989