190 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 3, No. 3, September, 2001

Middleware Architecture for Open Control Systems

in the Distributed Computing Environment

Wongoo Lee and Jachyun Park

Abstract: The advance of computer, network, and Internet technology enables the control systems to process the massive data in the
distributed computing environments. To implement and maintain the software in distributed environment, the component-based
methodology is widely used. This paper proposes the middleware architecture for the distributed computer control system. With the
proposed middleware services, it is relatively easy to maintain compatibility between products and to implement a portable control
application. To achieve the compatibility between heterogeneous systems, the proposed architecture provides the communication

protocols based on the XML with lightweight event-based service.

Keywords: distributed control system, real-time, XML, open architecture

L. Introduction

The improvement of computer and network technology en-
ables the control systems to handle massive information in the
distributed computing environments like other computing
systems[1]. To develop such a distributed control system, a
middleware that provides various services such as ORB (Ob-
ject Request Broker) or event services is required. Using a
middleware reduces the development cost and provides the
compatibility between the heterogeneous control systems[2].
There are some well-known commercial middlewares cur-
rently available: CORBA (Common Object Request Broker
Architecture) from OMG (Object Management Group), EJB
(Enterprise JavaBeans) from Sun Microsystems, and COM
(Component Object Model) from Microsoft[8][9]. Even this
kind of the ordinary commercial middleware provides various
services to developers, it is still difficult to write domain-
specific applications such as distributed control and monitor-
ing applications because they are originally designed for the
general distributed applications. With these basic middleware
services only, it is really hard to maintain the compatibility
between the control applications from different vendors.

To achieve the openness within the control domain, there
are a couple of consortiums in work. OPC (OLE for Process
Control) is one of those consortiums to use COM-based mid-
dleware for the control domain [3]. It, however, defines only
interfaces between the components rather than provides the
runtime services [4]-[7]. Although OPC is an example for keep-
ing openness and compatibility, lots of efforts are required for

implementation and maintenance of a control application with it.

This paper proposes a middleware for the control systems
based on the COM architecture provided by Microsoft Win-
dows. It provides the specification of the control equipments,
the distributed event service, the communication message
format, and the communication protocol. This paper also
demonstrates an implementation example to visualize the
openness and flexibility of the proposed middleware. The

Manuscript received: Nov. 18, 2000., Accepted: Mar. 14, 2001.

Wongoo Lee: Automation Engineering, Inha University.(iwongn@
resl.inha.ac .kr)

Jaehyun Park: School of information and communication, Inha
University.(jhyun@inha.ac kr)

% The work reported in this paper is partially supported by Inha
University under grant 1999-20695.

target domain used in this paper is the chip-manufacturing
domain based on the SEMI’s GEM protocol [10].

Section 2 introduces the middleware for components and
communications. Section 3 explains the services for the con-
trol domain and the configuration of whole system. And the
implementation of the prototype for GEM protocol is in sec-
tion 4. Finally, a conclusion is remarked in section 5.

I1. Underlying Technologies

Before describing the middleware proposed in this paper,
the underlying technologies are introduced in this section.
1. Component-base architecture

Although object-oriented methodology makes it possible to
design and implement the huge and complex systems, it also
has some problems such as code exposure, versioning diffi-
culty, and deploying. Furthermore, its white-box model inher-
ently lacks compatibility and reusability. To overcome these
shortcomings of the object-oriented method, the component-
based methodology that uses the black-box model is widely
used to isolate interface from implementation. The framework
for the middleware also moves from the object-oriented to the
component-based methodology [13].

To develop a distributed system in the past, the lower layer
APT’s such as socket or RPC have been widely used. But these
procedural methods require more time and cost to develop and
maintain than the object-oriented methods. Since most of the
component models support RMI (Remote Method Invocation),
the component itself can be distributed over the network envi-
ronment. This means that developers can write distributed
control applications more easily using a component-based
middleware. Another trend in designing a modern middleware
is to support T/P monitor feature, often called as CTM (Com-
ponent Transaction Manager) that provides load balancing,
resource management, message queuing, and event service
[12].

2. XML (eXtended Markup Language)

XML is a meta-language to describe other languages. Since
the underlying philosophy of XML aims the flexibility and
portability, it can be used in any platform. Thanks to its port-
abiliby, the platform-independent RMI such as SOAP (Simple
Object Access Protocol) appears recently. Most of modern
platforms provide the DOM (Document Object Model) parser

Transaction on Control, Automation, and Systems Engineering Vol. 3, No. 3, September, 2001 191

SRR
User Applicatians

i User Apolication

— .

! | Configuration Manager [~~~ [Event Service] ' &

' I) i

! H T - IS)

| £ N e XML Schema for Equipment [f
N . .. Subscriber |

Configuration Client ; G]

Equipmant No

Dircstory Sarvice

B .
vﬁ S
~1 ! XML Schera Inforamtion i

_ . Gontiguration Server | Publisher

L

i

; »

~ » [
i

1

|

H 1
| C v ;
——————— f 8 Lo
Schama Manager 71"-]»——, R
&

A\)

Flg 1. Deployment diagram for system configuration.

and SAX (Simple API for XML) engine[14,15]. In addition,
XML is adequate to model a hierarchical data structure.
3. UML (Unified Modeling Language)

This paper contains various diagrams in UML (Unified
Modeling Language), the standard object-oriented modeling
language accepted by OMG in 1997. The UML is a language
for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system[11]. It especially is
useful to model a distributed system that has many compo-
nents and protocol scenarios. Use Case diagram, Class dia-
gram, Component diagram, Sequence diagram, and Deploy-
ment diagram are used for visualizing the proposed middle-
ware.

II1. Middleware Architecture
1. Structure of proposed middleware

Fig. 1 shows the global structure of the distributed control
environment and proposed middleware in it. It shows three
major groups: (1) server node, (2) client node, and (3) global
service node. The server node produces data for control or
monitoring and the client node consumes the produced data.
For example, in a distributed monitoring system, a sensory
device is a server node because it produces a measured data
and the monitoring computer is the client node. Both nodes
have the same middleware components: event service, schema
manager and configuration manager. Besides these common
components, there are symmetric server/client components:
configuration server/client and data publisher/ subscriber.
Two global service nodes, web server and directory server, are
also included for providing XML schema for equipment and
its information.

Data exchange between the client and server nodes goes
through the publisher and subscriber components. However,
before real data exchange, client and server nodes should ne-
gotiate their configuration through configuration manager
after establishing a session between them. To establish a
session, the applications must know the counterpart’s physical
location. In the proposed middleware architecture, the global

service nodes are responsible for session management and the
mapping between logical name and physical location. In addi-
tion to session establishing services, it provides an event ser-
vice that is a useful data exchange method in control applica-
tions. Following subsections described each module and ser-
vices of the proposed middleware in detail

<<interface>>| <<interface>>|
IUnknown iBasicDevice
<<interface>>| <<interface>>| <<interface>>|
IWriteDatum |IReadDatum IWaitData
<<interface>>| <<interface>>| |<<interface>>| <<interface>>|
IWriteData WriteStream |IReadData IReadStream

Fig. 2. Class diagram of data read/write function.

2. Equipment abstraction

An important requirement for the control systems is the pre-
cise specifications to describe the characteristics of the equip-
ments. It is, however, very difficult to model all the equipment
functions under single interface. In the proposed middleware,
instead of modeling all equipments with single interface, each
function of equipment is modeled with a different interface,
and, in turn, equipment is modeled as a group of functions. In
the proposed middleware, /BasicDevice is only one mandatory
interface to support common features of all equipment; (1)
initialization, (2) configuration, and (3) acquisition of compo-
nent information. Because querying all interfaces to check
whether a component supports the specific interface or not is
very inefficient, a component category is used in this paper.
Component category is a standard mechanism to advertise
interfaces that is available in a component under COM envi-
ronment. A specific equipment component just registers it
interface to specific category and the middleware takes care of
the rest. Fig. 2 shows a sample interface hierarchy for the
read/write functions. An application program can use these
functions by a query mechanism.
3. Data format

Two kinds of data format should be defined. The first one is
the format for transferring data packet, and the second one is
the configuration format of the equipment. Since the first is
likely to be transferred in network frequently, the overhead of
caused by XML is not negligible. To reduce this overhead,
binary-encoded format is used. XML Information Set (Infoset)
is defined for this purpose. Because XML Infoset is not sup-
ported, however, by all of the platforms yet, the proposed
middleware implements a simple interface to convert the ordi-
nary XML to binary format. Fig. 4 shows Deployment dia-
gram on this conversion. Besides this conversion interface, the
middleware must identify the data type and their length in the
binary packet. For this, the same specification in XML Infoset
is used. The specification defines almost all of the types used
in programming language such as C, C++. By using XML

192 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 3, No. 3, September, 2001

| Poquest IConfighata Interface Poirtert) |
ey
U Retun iConfigleta Intertace Pointer(} |
[Pt e |

! setData(detaNerne), catavalue!)

[——
! ‘setDeta(detaNamen, catavalueN) itexate ynkil finish
[-

: ! setClisntinerface(pConfigDetaClient) - ——

1 o +

: getlistOfataNarme)

H peDetal)

e -

‘> iterate urttil finigh

H i
| |

r

i 1

j .

T

! QetOatal)} |

[7 T
I 1

))

1 i

I 1

I 1

Fig. 3. Sequence diagram for component configuration.

Corwert between binary foifat and raw XML ;
{

Fig. 4. Conversion between binary format and raw XML.

specification, the system can manage data with standardized
manner for the complex data format such as RPTID message
of GEM protocol (described later).

4. Dynamic configuration ,

The equipment component should be able to configure itself
dynamically. There are two kinds of configuration data: the
equipment global data and the client-specific data. The equip-
ment global data can be stored in the same location of the
component. But to store the client-specific data in the same
location is very inefficient and difficult to implement from
equipment’s view. The client-specific configuration data must
be stored in custom location by client application. To support
this configuration scenario, the middleware defines two stan-
dard interfaces and their sequences as shown in Fig. 3. If there
is no client-specific data, the setClientInterface call and

e

e

|
v

T T
User Application ' !
I l
squest Configuration Oata() !
+
| Request Location() |
! 4
i Return Lacationl) !
! Reguest XML Scherma ot Equipment(y
i
I
h
|

Return XML Schemaf)
Fequest Configuration Data()
¢

R
I
f
1
!
t
!
)
i
1
(
'
)
|
|
|
1

—
I

—
' | Return Configuration Data(}

1
Return Contiguration Schema and Datal)
|

e AW

|
i
i
' | (
! | !
P i \
! ' !
' i \

Fig. 5. Sequence diagram for configuration data.

subsequent sequences can be omitted. When user application
calls setClientInterface, it passes the pointer of IConfigData-
Client interface. With this interface, equipment component can
configure itself with user application specific data.

Table 1. Properties for the XML Schema.

Name Type Description

Name String [The name of Equipment
UniquelD | GUID | Globally unique ID

Location URL | The location of XML Schema

Since configuration data is transferred only during the ini-
tialization or modification period and it requires very complex
structure, usually in hierarchy structure, XML is an effective
scheme for this purpose. To use XML with complex structure,
XML Schema must be defined to advertise the configuration
data of equipment at runtime. To store schemas in the public
place, directory service, Active Directory in our case, is used.
It makes easy to implement the stable and public storage
through auto replication and its accessibility. Table 1 shows
schema properties that are designed for equipments within a
directory service. As shown in table 1, because the location
type is an URL, it can be viewed XML browser directly. It
means client application can be written based on commercial
web-browser. Fig. 5 depicts the sequence that user application
gets configuration schema data.

#document
Regend

Infoset Rool
Eauipment

Element

Name vengor ot
ata

Type

#Sting Name Description

#String #String

Somponent Device
Version HRevision Location version Revision Location

#Siting #Sting #URL #String #5irg #Siting

Fig. 6. Mandatory elements of configuration data.

Although the mandatory properties exist in configuration
data that can be acquired with standard manner, the data can
be different to the equipments. In spite of these diversity of
configuration data, XML can be parsed with standard DOM
parser or SAX engine that is provided underlying platform.
Fig. 6 shows mandatory properties in equipment configuration
data.

5. Data acquisition

There are two basic interfaces for data acquisition, /Read-
Data and [WaitData. They are used for periodical querying
and notification from equipment respectively. Even these two
are mandatory interfaces, not all equipments support both read
and write functions. For example, sensors have only IWaitData
interface. For this kind of equipments, the proposed middle-
ware provides default implementation of the connection com-

Transaction on Control, Automation, and Systems Engineering Vol. 3, No. 3, September, 2001 193

ponents. Fig. 7 shows a sample connection component and
underlying operation. It uses aggregation mechanism of COM.
Fig. 7 shows only IWaitData-to-]IReadData component, but
IReadData-to-IWaitData component can be defined in the
reverse sequence.

Event service is a mechanism for the publishers to notify
subscribers of their data without any queries from subscribers,
which is used to implement IWaitData interface. COM tech-
nology provides two mechanisms for event services; Connec-
tion Point and COM+ Event Service. Connection Point is not
suitable to be used out of machine boundary because it is
originally designed to be used within single process by stan-
dard Automation interface. And it requires the overlapping of
execution between publisher and subscriber. Since it, however,
supports Automation mechanism, it can be used by script en-
vironment such as VBScript and ASP. COM+ event Service
provides useful services such as transaction processing and
reliable queuing. But it may impose large overhead to system.

With considering these natures of event services, this paper
proposes a simple event service that has lightweight overhead
and supports script environment. It uses the TCP-based pro-
prietary protocol, named MS2DC (Monitoring Server-To-Data
Collector) across the machine boundary and Connection Point
and windows messages within machine boundary. The TCP-
based protocol makes the whole middleware portable onto the
various RTOS (Real-time Operating System). Fig. 8 shows the
activity diagram of three threads at equipment side: (a) is the
implementation of IreadData, (b) is the IWaitData, and (¢) is a
garbage collection algorithm.

I

| T T
User Application ! i
) |

; 1 Wait Oata From Equipment() |

i — i

1 | Get Data From Equipment() |

' Use IWaitData + * {

i | I

i i

! | Save Data in Local Cache} |}

| .

! Request Data() ! H

— |

e Return Cached Dataf) ! |
/k* 1 i
| |

))

| |

| |

i i

- j
 Use iReadData !
. |

i

Fig. 7. Sequence diagram for operation of connection component.

Wait Request from User

[Receive Request Message]

\ [invalid data is requested]
Return NACK)€

[valid data is requested]

Return Requested Data

(a) Response to data request messages

Wait Event from Device

fevent occured]

Gonsl(um List of Clients That Are Registered with Event and Move First Entry ‘

{5ena Data to Current Entry I
N
—

| . [send error occurred]
na more entry Record as Dead User
- \éj

0

/,Jﬁ
 Mave Nex{ En\!y,

.

K [more entsy]

(b) Publish data that come from device

Sleep 10 seconds
Move First Entry of Clients List
Send IsAlive Massage
[no more entry | [error occurred]
4}(09\9(9 Entry

[na erior} [more entry]
™
Move Next Entry

(c) Detect dead client and delete
Fig. 8. Activity diagram for equipment side of MS2DC
Protocol.

At the user side, the application program can query data and
register itself as a subscriber for a specific data. When the
middleware implemented as a local daemon receives this reg-
istration request, it searches the location of equipment and
transfers the registration-request message to remote equipment
node. When the local middleware receives the data from the
equipment nodes, it hands over them to applications by Win-
dows message. The middleware enables applications use the
Connection Point mechanism rather than Window message for
the pure object-oriented programming. To translate Win-
dows message to the COM event, STA (Single Thread Apart-
ment) is used. Fig. 9 describes components and their commu-
nication methods.

Table 2. The used SECS-II messages.

Name Stream | Function | Direction
Are You There (AYT) 1 1 HeE
Status Collection 1 3 H-E
Establish Communica- 1 13 HeoE
tion

Request Online 1 17 H-E
Equipment Constant 2 15 H-E
Enable Collection 2 37 H-E

194 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 3, No. 3, September, 2001

Use MS2DC protocol :
—_—

j—
H ‘ Middleware as local service
-

.
I
|

—
: these components have a windows message oump | . " s
! ... Mepping component 1 Use windows messages |

_ . COM component that the middieware provides
i

,‘,\——”7’”41 Use Gonnection Point
i ! 1
! :

r
User component

Process Boundary

Machine Boundary ‘

Fig. 9. Component diag'rar’n"f(')r message delivering and
communication protocols.

IV. Implementation

To demonstrate the flexibility and portability of the pro-
posed middleware architecture, the prototype middleware is
implemented for the standard protocol in semiconductor
industry, SECS-I, SECS-II, HSMS(High-Speed SECS
Service), and GEM(Generic Model for Communications and
Control of SEMI Equipment). Using the prototype middleware,
simple control and monitoring application is developed for the
commercial chip mounter (Samsung CP-40).

GEM is a standard protocol that is used for general model-
ing of semiconductor equipments and SECS-II is communica-
tion data format for GEM. SECS-I and HSMS are standard
communication protocols based on RS-232 and TCP/IP re-
spectively. Without any middleware, user application should
contain a code to support GEM and SECS/HSMS., The appli-
cations coded with a commercial protocol stack of GEM and
SECS/HSMS does not flexibility nor openness.

The prototype middleware is implemented using XML-
based components, with which GEM data in a hierarchy are
handled efficiently. This prototype system does not support all
of the GEM/SECS-II commands. Table 2 summarizes the
message types used in the prototype system. The GEM com-
ponent uses CEID messages for event delivery, and it can read
or write status variables by SVID messages. All the applica-
tion can operate within a standard web browser because CEID,

Fig. 10. Sample snapshot of the implemented system.

SVID and RPTID messages can be delivered using XML for-
mat on the top of implemented middleware.

V. Conclusion

This paper proposes and implements a middleware that is
designed for the distributed control domain. Using the pro-
posed interfaces and runtime services increase the compatibil-
ity between the heterogeneous control applications from mul-
tiple vendors, and, as a result, managing the heterogeneous
equipments can be standardized. The event services imple-
mented in this paper provide easy and lightweight infrastruc-
ture for the event-driven control applications. Combining the
proposed event services with real-time network with QoS
(Quality of Service), developers are able to control and moni-
tor equipments in real-time manner transparently. The pro-
posed system provides XML and TCP/IP-based protocol for
the communications between the different platforms as in
Internet.

References

[1] Jerry Z. Gao, Cris Chen, Yasufumi Toyoshima, David K.
Leung, “Engineering on the internet for global software
production”, Computer, vol. 32, no. 5, pp38-47, May,
1999.

[2] R.Orfali, D. Harkey and J. Edwards, “The essential cli-
ent/server survaval guide”, John Wiley & Sons, 1996.

[3] OPC Taskforce, “OPC Overview”, http://www.opcfoun-
dation.org, Oct. 1997.

[4] OPC Taskforce, “OPC Common Interface”, http.//
www.opcfoundation.org, Oct. 1997.

[5] OPC Taskforce, “OPC data access custom interface speci-
fication 2.04”, http://www.opcfoundation.org, Oct. 1997,

[6] OPC Taskforce, “OPC alarms and events custom interface
specification”, http://www.opcfoundation.org, Oct. 1997.

[7] OPC Taskforce, “OPC batch custom interface specifica-
tion 1.0”, hitp://www.opcfoundation.org, Oct. 1997.

{8] Robert Orfali, Dan Harkey, Jeri Edwards, “Instant
CORBA?”, John Wiley & Sons, 1998.

[9] Richard Monson-Haefel, “Enterprise JavaBeans”, O'Reilly
& Associates, Inc., 1998.

[10] SEMI, “SEMI E30-0299 Generic Model for Communi-
cations and Control of SEMI Equipment (GEM)”,
hitp://dom.semi.org, Feb. 1999.

[11] Grady Booch, James Rumbaugh, Ivar Jacobson, "The
unified modeling language user guide”, Addison Wesley,
1999.

[12] Y. P. Shan and R. H. Earle, “Enterprise computing with
objects from client/server to the internet”, Addison
Wesley, Dec. 1997.

[13] Peter M. Maurer, “Components: what if they gave a
revolution and nobody came?”, Computer, vol. 3, no.6,
pp28-34, Jun. 2000.

[14] Don Box, “Essential XML”, Addison Wesley, 2000.

[15] Martin Naughton, “The joy of SAX”, http.//msdn. Micro-
soft.com/workshop/xmi/articles/joyofsax.asp, Jun. 2000

Wongoo Lee

Received BS and MS degrees in auto-
mation engineering from Inha Univer-
sity. He is interested in open control
architecture and distributed computer
control software.

Transaction on Control, Automation, and Systems Engineering Vol. 3, No. 3, September, 2001 195

Jaehyun Park

He received BS, MS, and Ph.D degrees
in control and instrumentation engineer-
ing from Seoul National University. He
works for Inha University since 1995,
His research area includes realtime
computing, network, embedded systems,
and open control architecture.

