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Building Light Weight CORBA Based Middleware
for the CAN Bus Systems

Seongsoo Hong

Abstract: The software components of embedded control systems get extremely complex as they are designed into distributed sys-
tems consisting of a large number of inexpensive microcontrollers interconnected by low-bandwidth real-time networks such as the
controller area network (CAN). While recently emerging middleware technologies such as CORBA and DCOM address the com-
plexity of distributed programming, they cannot be directly applied to distributed control system design due to their excessive re-
source demand and inadequate communication models. In this paper, we propose a CORBA-based middleware design for CAN-
based distributed embedded control systems. Our design goal is to minimize its resource need and make it support group communica-
tion without losing the IDL (interface definition language) level compliance to the OMG standards. To achieve this, we develop a
transport protocol on the CAN and a group communication scheme based on the well-known publishet/subscriber model. The proto-
col effectively realizes subject-based addressing and supports anonymous publisher/subscriber communication. We also customize
the method invocation and message passing protocol, referred to as the general inter-ORB protocol (GIOP), of CORBA so that
CORBA method invocations are efficiently serviced on a low-bandwidth network such as the CAN. This customization includes
packed data encoding and variable-length integer encoding for compact representation of IDL data types.

We have implemented our CORBA-based middleware on the mArx real-time operating system we have developed at Seoul National
University. Our experiments clearly demonstrate that it is feasible to use CORBA in developing distributed embedded control sys-
tems possessing severe resource limitations. Our design clearly demonstrates that it is feasible to use a CORBA-based middleware in

developing distributed embedded systems on real-time networks possessing severe resource limitations.
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1. Introduction

There is a growing demand for distributed computer control
in sophisticated embedded control systems such as high-end
passenger vehicles, numerical control machines, and avionics
fly-by-wire systems. These systems are often equipped with
tens of microcontrollers which oversee diverse functional units
connecting hundreds, sometimes thousands, of analog and
digital sensors and actuators. There are significant merits in
designing such complex embedded control systems in a dis-
tributed fashion. First, it is more cost effective to build an
embedded control system with several customized, inexpen-
sive microcontrollers than to do so with a single high perform-
ance microprocessor. For example, a passenger vehicle con-
sists of various functional components including engine con-
trol, anti-lock brake, and cruise control units. Since each of
these units requires specific functionalities such as digital
signal processing or interrupt driven event processing, func-
tional units with dedicated microcontrollers can reduce the
overall hardware cost. Second, a distributed embedded control
system is more reliable than a centralized one since it is possi-
ble to isolate the breakdown of one subsystem from others in a
distributed control system.

Unfortunately, such benefits come with a serious cost-- in-
creased software complexity. This makes software systems in
a distributed embedded control system get extremely compli-
cated to handle the added complexity as well as inherent one.
Note that embedded control software must operate in a harsh
environment, run on a wide variety of microcontrollers, and
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interface with heterogeneous /O devices. Thus, it is very dif-
ficult, though not impossible, to design a distributed embed-
ded control system without supports from real-time operating
systems, well-defined network protocols, and component-
based middleware systems.

Such software complexity can be partially addressed with
recently emerging component-based middleware technologies
such as CORBA {5], DCOM (3], and Java RMI. They can
provide embedded system designers with platform independ-
ence and component reuse through interface inheritance and
software bus abstraction mechanisms. However, these tech-
nologies cannot be directly applied to embedded control sys-
tem design without careful customization and tuning since
they were originally conceived and developed for use in a
general purpose distributed computing environment.

In this paper, we propose a CORBA-based middleware de-
sign for distributed embedded control systems on the CAN
(controller area network) bus. The CAN [2] is a rapidly
emerging standard for embedded real-time network substrates
and widely used in the automotive industry worldwide. In
designing the new CORBA-based middleware, we put our
emphasis on meeting three key requirements inherent to the
CAN-based embedded systems. First, the ORB implementa-
tion on each processing node should have a small memory
footprint not exceeding a few hundred kilobytes. Second, the
message traffic per service invocation should be kept low.
Note that on the CAN the highest network bandwidth is only 1
Mbps and the payload of each message is only eight bytes
long. Last, the ORB should support group communication to
facilitate easy dissemination of sensory data. The standard
CORBA lacks group communication capabilities.

To meet these requirements, we redesign the general inter-
ORB protocol (GIOP) into an environment specific IOP
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(ESIOP) for the CAN bus and define a compact common data
representation (CCDR) format. We name the protocol the
embedded inter-ORB protocol, or EIOP. We also develop a
new transport protocol on the CAN to support group object
communication. The proposed CORBA design is compliant to
the OMG (object management group) standard at the IDL
(interface definition language) level and strictly follows the
guidelines on ESIOP as given by OMG.
1. Related Work

Three areas in CAN-based systems and middleware come
close to our work: (1) high-level protocol designs for CAN,
(2) object-oriented modeling schemes on CAN, and (3)
group communication supports for the standard CORBA.

Since the CAN standard specifies protocols only up to the
data link layer, it lacks high-level protocol services such as
distribution of media access identifiers and establishment of
communication transports. Thus, it is laborious to build a dis-
tributed application, even with modest size and complexity, on
the CAN. To address this problem, several commercial, high-
level protocol suites have been developed and widely used in
industry {1, 9, 8]. DeviceNet by Allen-Bradley is one of such
protocols for the CAN. One of noticeable features of De-
viceNet is a high-level abstraction called device profiles. A
CAN node in DeviceNet is assigned one of the standard de-
vice profiles, e.g., a photoelectric sensor profile, which speci-

fies the type and behavior of a software component in the node.

Together with many other features of DeviceNet, device pro-
files provide a desired level of abstraction for CAN program-
mers. These profiles are systematically defined by the Open
DeviceNet’s Vendor Association (ODVA) and distributed to
end users by the vendors.

In a distributed real-time control system, it is typical that
sensor data are periodically produced without specific requests
from its consumers and then disseminated among different
controllers. In such an operating environment, subscription-
based group communication is more important than connec-
tion-oriented point-to-point communication. In the literature,
group communication for real-time systems has been well
studied on various network media [15, 16]. Particularly, in [12,
13}, Kaiser et al. propose a real-time object invocation scheme
and a publisher/subscriber scheme on the CAN 2.0B bus.
These are one of seminal attempts to develop systematic para-
digms for real-time object models on the CAN. Their ap-
proach in [13] uses an abstraction called an event channel,
which establishes a virtual connection between publishers and
subscribers. Each event channel is identified with a global
event tag which takes up 14 bits in the 29-bit CAN 2.0B iden-
tifier. The remaining 15 bits are used for a message priority
and a node identifier. A drawback of this approach is that it
cannot be effectively applied to the CAN 2.0A bus which has
only 11-bit identifiers: it would be able to offer at most 64
event channels in CAN 2.0A even if only five bits were used
for a message priority and a node identifier. This poses an
important practical problem. Note that the CAN 2.0A bus is
preferred to the 2.0B bus since the extended 2.0B identifiers
increase bus arbitration overhead [1]. Though our approach
uses a similar abstraction called an invocation channel, it dif-

fers from the event channel since publishers access an invoca-
tion channel via their own port. Under a given upper layer
protocol, our group communication scheme can support up to
512 ports in CAN 2.0A.

DeviceNet also supports group communication. However, it
requires that an explicit bidirectional connection should be
established between producers and consumers. Such a bidirec-
tional connection is created by combining two one-way com-
munication, such as the publisher/subscriber model. This re-
quirement makes it impossible to support anonymous commu-
nicationi* such as the publisherl” subscriber model! |
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Fig. 1. Example distributed embedded control system: Passen-
ger vehicle control system.

2. Advantages of CORBA-based Design

As mentioned earlier on, there are several advantages in de-
signing distributed computer control systems with the
CORBA-based middleware. First, the CORBA ORB separates
the details and complications of communication hardware and
protocols from application design, thus helps programmers
focus only on application-speciffic issues. As a specific exam-
ple, consider the marshaling process automatically performed
by the CORBA-based middleware. The ORB translates data
types in application code into network message types and
further translates them into CAN messages. Consequently,
application programmers need to pay little attention to CAN
speciffic issues. Second, the CORBA-based middleware
approach allows for the component-based design of distributed
computer control systems, and this renders the resultant sys-
tems reconfigurable and extensible. Observe that programmers
can easily extend an existing system by adding a new sub-
scriber component to the system as long as they can access the
specifications of provided services and locate the producers of
these services. As will be clear in the remainder of this paper,
the CORBA-based middleware maintains a service locator
named a conjoiner and keeps the service specifications in the
form of interface definitions. Third, the CORBA-based mid-
dleware improves interoperability between distributed com-
puter control systems and supervisory computer systems
through the well-defined message types of CORBA. As dis-
cussed in Subsection 1.1 the legacy CAN protocols alone can-
not provide such advantages since they lack high-level proto-
col services above the data link layer. While commercial pro-
tocol suites such as DeviceNet were developed to provide
high-level abstractions, they can only partially achieve inter-
operability and composability since they were designed to fit
into only the CAN protocol and to rely on static service bind-
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ing. As a result, users require a gateway to connect a distrib-
uted computer control system with a supervisory computer
system.

I1. Target System Hardware Model

A typical distributed embedded control system consists of a
large number of function control units interconnected by em-
bedded control networks. In this section, we present our dis-
tributed embedded control system model.
1. Functional Control Unit

Figure | demonstrates a typical distributed embedded con-
trol system which makes the electronic control system of a
passenger vehicle. It consists of several functional control
units (FCU) which are interconnected by embedded control
networks. Each FCU conducts a dedicated control mission by
interfacing sensors and actuators and executing prescribed
control algorithms. As shown in Figure I, it has one or more
microprocessors and microcontrollers attached to an on_board
system bus. It is also equipped with a bus adaptor which en-
ables the FCU to participate in communication via embedded
control networks (ECN).
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Fig. 2. Protocol header format using CAN identifier structure.

2. Embedded Control Network

As shown in Figure 1, embedded control networks (ECN)
connect FCUs through inexpensive bus adaptors. Also, they
are often required to provide real-time message delivery ser-
vices, and subject to very stringent operational and functional
constraints. In this paper, we have chosen the CAN [11] as our
embedded control network substrate since it is an internation-
ally accepted industrial standard satisfying such constraints.

The CAN standard specifies physical and data link layer
protocols in the OSI reference model [2]. It is well suited for
real-time communication since it is capable of bounding mes-
sage transfer latencies via predictable, priority-based bus arbi-
tration. A CAN message is composed of identifier, data, error,
acknowledgment, and CRC fields. The identifier field consists
of 11 bits in CAN 2.0A or 29 bits in 2.0B and the data field
can grow up to eight bytes. When a CAN network adaptor
transmits a message, it first transmits the identifier followed
by the data. The identifier of a message serves as a priority,
and a higher priority message always beats a lower priority
one. The CAN possesses two important characteristics. First, it
offers a consistent broadcast mechanism in a straight- forward
manner via a serial broadcast medium and non-destructive
priority-based bus arbitration. Second, it supports the anony-
mous producer/consumer model of data transmission which is

often referred to as the publisher/subscriber communication
model [13, 1}. In the CAN protocol, a producer of a message
is totally unaware of its consumers and simply broadcasts
messages over the bus without specifying their destinations. A
CAN bus adaptor can be programmed to accept only a specific
subset of messages that carry predefined identifier patterns
with them. This filtering mechanism, which is made possible
via a mask register on a CAN interface chip, allows consumer
nodes on the CAN to select desired messages among all the
broadcast messages. This addressing method, also known as
subject-based addressing [13, 1], renders the CAN suited to
the publish/subscriber communication model.

In this paper, we intentionally consider only the CAN 2.0A
standard. While some CAN controllers support both 2.0A and
2.0B, the 29-bit identifier format gains little support from most
of commercial high level protocol products such as DeviceNet
This is because CAN 2.0B networks incur a compatibility
problem with already installed 2.0A networks. More impor-
tantly, the extra 18 bits of 2.0B messages increase the bus
arbitration overhead and reduce determinism by increasing
potential jitter during message transmission.

HI. Defining the Protocol Header

While CORBA relies on the point-to-point transport service
provided by standard protocols such as TCP, distributed con-
trol systems require group communication capabilities. In this
section, we design a publisher/subscriber protocol for our
CAN-based CORBA. We first define the protocol header for-
mat using the CAN identifier structure. We then present the
conjoiner-based announcement/subscription mechanism which
allows for dynamic binding between publishers and a group of
anonymous subscribers.

1. Defining the Protocol Header

In our design, we make use of the CAN identifier structure
for the protocol header. The greatest challenge in defining the
protocol header using the 11-bit CAN identifier structure is in
its limited size. We put the greatest emphasis on making effi-
cient use of the bits in the identifier. Also, we attempt to sim-
plify the protocol design to warrant the small execution over-
head and code size of the protocol stack as long as it can pro-
vide desired services for higher level CORBA layers. Figure 2
shows our protocol header format. We divide the CAN identi-
fier structure into three sub-fields: a protocol ID, a transmit-
ting node address, and a port number. They respectively oc-
cupy two, five and four bits amounting to 11 bits. The Proto
field denotes an upper layer protocol identifier. The data field
following the identifier in a CAN message is formatted ac-
cording to the upper layer protocol identifier by Proto. In
our current design, among four possible values of the Proto
field only 10, and 11, are used for the EIOP and the channel
binding protocol, respectively. The other two are reserved for
potential user-defined protocols.

The TxNode field is the address of the transmitting node.
In our design, one can simultaneously connect up to 32 distin-
guishable nodes with the CAN bus under a given upper layer
protocols. The TxPort field represents a port number which
is local to a particular transmitting node. Since TxNode
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serves as a domain name which is globally identifiable all
across the network. TxNode and TxPort collectively make a
global port identifier. This allows ports in distinct nodes to
have the same port number and helps increase modularity in
software design and maintenance. As the TxPort field sup-
ports the maximum of 16 local ports on each node, up to 512
global ports coexist in the network under a specific upper
layer protocol.

Note that the header does not include any form of destina-
tion addresses and that receiving CAN nodes can select and
accept messages sent from a specific set of ports, using the
message filtering mechanism of the CAN bus adaptor. In this
way, anonymous publisher/subscriber communication is effec-
tively supported.

The layout of the CAN data field is determined by Proto
which designates the upper layer protocol. A CORBA object
invocation message longer than eight bytes should be frag-
mented into multiple CAN messages. Since the CAN offers
reliable and ordered message transmission based on physical
error detection and recovery, message re-assembly at a receiv-
ing end is done in a straightforward manner.

2. Conjoiner-based Channel Binding Mechanism

Our publisher/subscriber model relies on an intermediary
object we name a conjoiner. A conjoiner is a pseudo-CORBA
object which establishes an invocation channel from publish-
ers to a collection of anonymous subscribers. It must be started
right after network initialization, and then operational during
the entire system service period. It maintains a global binding
database where each CORBA object in the system has a corre-
sponding entry. One of important roles of the conjoiner object
is to translate a CORBA object name string into a global port
number consisting of TxNode and TxPort. This is done by
looking up the global binding database. Figure 3 illustrates the
conjoiner-based publisher/subscriber framework and the
global binding database.

As shown in Figure 3, an entry in the global binding data-
base is a quadruple consisting of a channel tag, an OMG IDL
interface identifier, and TxNode and TxPort. The channel
tag is a unique symbolic name associated with each invocation
channel. An invocation channel is a virtual broadcast channel
from publishers to a group of subscribers. Each publisher is
attached to an invocation channel via its own port. A channel
tag is statically defined by programmers when they write the
application code. Both publishers and subscribers use it as a
search key in the global binding database later on. The OMG
IDL interface identifier is a unique identifier associated with
each IDL interface in the system. The IDL compiler generates
IDL interface identifiers. The CORBA run-time system uses
these identifiers to perform type checking upon every method
invocation. This ensures strong type safety as required by the
CORBA standard. The channel tag and the interface ID to-
gether work as a unique name for each invocation channel. It
is programmers’ responsibility to define a system-wide unique
name for an invocation channel.

The conjoiner object oversees object registration, consumer
subscription, and dynamic channel binding between publishers
and subscribers. When a publisher wants to get attached to an

invocation channel, it first obtains a communication port from
its local free port pool, and then registers it to the conjoiner
object. This procedure is illustrated in Figure 3 by an arrow
labeled as (1) announce (). Such a registration process leads
to the creation of an entry, or the modification of one if it ex-
ists, in the global binding database. Thus, a publisher’s regis-
tration message contains all necessary information to construct
a database entry such as a channel tag, an OMG IDL interface
ID, and a global port number.

A subscriber wishing to subscribe to an invocation channel
also accesses the conjoiner object, as depicted in Figure 3 by
an arrow labeled as (2) subscribe (). A subscriber’s mes-
sage contains a channel tag and an IDL interface identifier. If a
matching entry is found in the global binding database, the
conjoiner provides the subscriber with the binding information
of the invocation channel™ The subscriber ends its subscrip-
tion process by updating the mask register of the CAN bus
adaptor so that it can accept subscribed messages later on.

Engine | Gearbox
FCU FCU

Sensors/

Actuators

. 3

D foranenend
Gateway Y Embedded
FCU N processor
e ‘7 ” i BO(ivEEC>7 Functional Control Unit
- e pa -
- T :
* | Instrum. E Door 1 Audio
. FCU | FCU | FCU
. L

Fig. 3. Conjoiner-based object binding scheme.

// IDL

interface TemperatureMonitor {
// Update temperature value for a location.
oneway void update_temperature(
in short locationID,
in short temperature,
in int time);

}

Fig 4. IDL program for subscriber interface.

After subscription, subscribers are asynchronously informed
of changes in invocation channels. Note that a publisher may
be dynamically attached to an invocation channel or detached
from it. As shown in Figure 3, a binding agent in a subscriber
reacts to such asynchronous updates.

A subscriber maintains its own local binding database,
which contains the binding information of all the invocation
channels it currently subscribes to. Unlike the group commu-
nication scheme in [7], subscribers in our scheme receive mes-
sages directly from publishers using the local binding data-
bases. As an example, consider update temperature ()
method in Figure 3. The publishers of temperature data invoke
this method to send out messages via an invocation channel.
The subscribers receive the temperature data when their up-
date temperature() methods are executed. Since a
subscriber knows the port addresses of all of its publishers
using its local binding database, it can conveniently pick up
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subscribed messages from the broadcast bus. Note that every
subscriber intending to receive the temperature data should
possess the update temperature () method. The com-
mon interface of such subscribers is defined in an IDL pro-
gram.
3. Example Publisher/Subscriber Code

We present an example program which demonstrates the us-
age of our publisher/subscriber scheme. The program consists
of publisher and subscriber objects which respectively perform
temperature sampling and updating. The source program con-
sists of an IDL interface definition and subscriber/publisher

// Subscriber code in C++

// Define & channel tag
// for temperature monitoring.
#define TEMP_MONITOR_TAG Ox01

// Initialize the object request broker (URB).
CORBA: :0RB_ptr oxb = CORBA::0RB_init(arge,argv);
// Get a referemnce to the conjoiner.
Conjoiner_ptr conjoiner = Conjoiner:: narrow(

orb->get_initial reference("Conjoiner"));
// Create a servant implementing
// a temperature monitor object.
TemperatureMonitor_impl monitor _servant;
// Assign a local CORBA object name
// to the monitor object.
PortableServer: :UbjectId ptr oid =
PortableServer: :stxing_to_ObjectId(“Monitori");
// Register the object name and servant
// to a portable object adaptor (POA).
poa->activate_object with_id

(oid, Mmonitor_servant);

// Bind the monitor object
// to the TEMP_MONITOR_TAG.
conjoiner->subscribe

(TEMP_MONITOR_TAG, Smonitor_servant);
// Receive temperature values
while (1) {
}

// Publisher code in C++

// Define a channel tag
// for temperature monitoring.
#define TEMP _MONITOR_TAG Ox01

// Initialize the object request broker.

*CORBA: :0RB_ptr orb = CORBA::0ORB_init(argc,argv);

// Get a reference to the conjoiner.

Conjoiner_ptr conjoiner = Conjoiner::_narrow(
orb->get initial_reference(“"Conjoiner"});

// Obtain a reference to the temperature

// wonitor group TEMP_MONITOR_IFACE is an

// interface identifier generated

// by the IDL compiler.

BeatMonitor_ptr monitor =
conjoiner->announce (TEMP_MONITOR_TAG,

TEMP_MONITOR_IFACE);

while(1) {
// Invoke a method of subscribers.

monitor->update temperature(placeA, value,
currentTime);

Fig. 5. Publisher/subscriber code

code. Figure 4 shows the IDL code which defines the interface
of the subscriber objects. It specifies the signature of method
update_temperature() which updates temperature values in the
subscriber objects. This method is defined as a oneway opera-
tion which does not have output parameters.

Figure 5 shows the publisher/subscriber code in C++. In
both source files, there exist a unique channel tag
TEMP_MONITOR_TAG and an IDL interface identifier
TEMP MONITOR_IFACE. Note that TEMP_MONITOR TAG
is defined by programmers, while TEMP _MONITOR_ IFACE
is generated by our OMG IDL compiler.
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Fig. 6. Example encoding.

Table 1. Variable-length integer representations.

two Size Max. Value
MSB (bytes) (unsigned)
00 1 21
01 2 21
10 3 2721
11 5 221

IV. Embedded Inter-ORB Protocol

Remote method invocation in CORBA is handled through
the general inter-ORB protocol which allows for interoperabil-
ity among various CORBA implementations. The CORBA 2.2
GIOP defines a transfer syntax called common data represen-
tation (CDR) and eight messages types which cover all the
ORB request/reply semantics. However, the GIOP is not suit-
able for our embedded CORBA since it triggers a large num-
ber of CAN message transfers upon every method invocation.
In this section, we present a new inter-ORB protocol by defin-
ing a new transfer syntax and two message types. They are
called the embedded inter-ORB protocol (EIOP) and the com-
pact common data representation (CCDR).
1. Compact Common Data Representation

CDR is a transfer syntax which maps data types defined in
OMG IDL into a networked message representation so that
GIOP sends IDL data types over the network. It also addresses
inter-platform issues such as byte ordering and memory
alignments in such a way that it can support fast encoding and
decoding of IDL data types. Specifically, CDR aligns integers
on 32-bit boundaries and supports both little and big endian
byte orderings rather than mandating a common network byte
ordering. As a result, marshalling and unmarshalling of a
GIOP message becomes very fast if it is performed on proces-
sors supporting the same ordering and alignment. Clearly, the
generality and efficiency of CDR are achieved at the expense
of increased network load.

In order to make CDR affordable on a slow network such as
CAN, we propose compact common data representation
(CCDR). We optimize CDR in two ways. First, we add packed
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data encoding into CCDR in that integers need not be aligned
on 32-bit boundaries. This saves padding bytes. Figure 6 illus-
trates the saving when method invocation foo-
>op(’c’,1234,7d’,”HE1”) is encoded in CCDR. In this
example, we can save six padding bytes which are needed to
align two integers 1234 and 3 in CDR. (Integer 3 is inter-
nally used to specify the string length.) This packed encoding
scheme may increase the processing overhead of message
encoding and decoding and require extra buffer space on
nodes. This drawback can be minimized if the encoded mes-
sage fits in a single CAN message, which is often the case in
an embedded control system.

Second, we introduce a variable-length encoding scheme
for integers. While an integer is stored in four bytes in CDR,
most of integer instances in [DL programs are smaller than
2%.1. For example, in CDR, integers are very frequently used
to represent the sizes of string and sequence data types
of IDL. Obviously, these integer values are very small in most
cases.

Table 2. CORBA 2.2 GIOP message types.

Message Originator EIOP
Type support
Request Client yes
Reply Server no
CancelRequest Client yes
LocateRequest Client no
LocateReply Server no
CloseConnection Server no
MessageError Client or Server no
Fragment Client or Server no

module EIOP {

struct MessageHeader_ 1.0 {
octet magic; // OxEO
// Includes bit fields for
// version number and message type.
octet flags;
unsigned long message_size;

}i

struct RequestHeader_1 0 {
unsigned long  interface_id;
unsigned long  operation_id;

}

}

Fig. 7. EIOP message format.

We thus devise a variable-length integer encoding scheme in
that an integer occupies one to five bytes depending on the
actual value it represents. As shown in Table 1, we use first
two MSBs to denote the actual byte-length of an integer. We
decide to support only the big endian byte ordering in CCDR
to reduce the encoding/decoding overhead. Revert to the
method invocation example in Figure 6. We observe that extra
five bytes are saved through the variable-length encoding
scheme and that these two schemes together yield total eleven-
byte saving in this simple method invocation. As a result, the
method invocation can fit in a single CAN message in CCDR
while it needs three CAN messages in CDR.

2. EIOP Messages

In CORBA, every message transmitted over the network
starts with a GIOP header. A GIOP header is subdivided into a
12-byte common prefix and a type-specific header which var-
ies in size depending on message types. Table 2 shows eight
message types supported in the CORBA 2.2 GIOP. We make
two customizations on GIOP.

As the first customization, we reduce the number of sup-
ported message types into two in EIOP. To do so, we eliminate
from GIOP LocateRequest, LocateReply, CloseConnectioin,
and Fragment messages which are meaningful only in connec-
tion_oriented point to point communication. We also elimi-
nate Reply and MessageError messages since our CORBA
supports only asynchronous communication. As a result, EIOP
supports only Request and CancelbRequest messages, as
summarized in Table 2.

The second customizatin we make on GIOP is to reduce the
length of the message header of the Request type. Note that
messages of this type are most frequently seen in the system
since they carry method invocation information. Since the
header is included in every Request message, it is crucial to
Table 3. Hardware and software platforms for our CORBA-
based middleware implementation.

Hardware

40MHz Intel 386 EX embedded processor (no cache)
KVASER s PCcan CAN bus adaptor 2.0 [14]
(Intel 82527 CAN controller [4])

Software

mArx real_time operating system [17, 18]

our CORBA-based middleware (based on GNU ORBit
0.4.3)

KVASER’s PCcan device driver (ported onto mArx)

reduce its size. We first modify the common prefix by educing
the 4-byte magic field into one-byte magic code and merging
GIOP verseion, flags, and message type fields into the one-
byte flags. MessageHeader 1 0 in Figure 7 defines this new
header format.

We then modify the type-specific header of the request mes-
sage in two ways. First, we remove optional and reserved
fields such as service context and requesting principal from
the GIOP request header. They are used to store information
required only when add-on services such as Security and
Transaction are provided. Second, we encode name strings
appearing in the GIOP request header into integer identifiers.
RequestHeader 1 1 of GIOP includes string fields such as
object_key and operation. The object_key field contains an
interface name, an object name, an object adaptor name, etc,
and the operation field holds the method name. Since pro-
grammers tend to use long and self-explanatory strings for
these names to enhance the readability of programs, string
fields in a request message header may well occupy exces-
sively large space. We use integer-encoded interface_id and
operation_id fields in EIOP, EIOP relies on the IDL compiler
to obtain proper identifiers for them. Finally, we remove re-
quest_id and response_ expected fields since the Reply mes-
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sages are not supported in EIOP.

VI. Experiments and Performance Results

We have implemented our CORBA-based middleware using
GNU ORBit version 0.4.3 [10]. The target hardware consisted
of three PCs equipped with 40MHz i386 EX embedded proc-
essors and KVASER’s PCcan interface boards with Intel
82527 CAN controllers. The data transfer rate of our CAN bus
was 1Mbps. We wrote a CAN interface driver and incorpo-
rated it into the mArx real-time operating system {17, 18]. We
replaced the GIOP and CDR of ORBit by our EIOP and
CCDR libraries, and aggressively down-sized ORBit to make
it conformant to the OMG minimum CORBA specification [6].
Table 3 summarizes the hardware and software platform for
our implementation.

1. Performance Metrics

Our CORBA-based middleware had two important design
goals: (1) reducing the amount of message traffic required for
each CORBA method invocation, and (2) minimizing the
memory requirement of the ORB. While the simplified mes-
sage headers of the EIOP contribute to reducing method invo-
cation latencies, the CCDR incurs an extra processing over-
head for unpacking and re-aligning integers. This might pose a
critical problem in embedded control systems built with slow
microcontrollers such as 386 EX embedded processors. We
thus used the following performance metrics for the analysis
of our CORBA-based middleware implementation.

e Protocol processing latency: In our CORBA-based mid-
dleware, the saving in message traffic is partially converted
into the increased protocol processing overhead including
marshaling and unmarshaling of the EIOP messages. The pro-
tocol processing latency on the sender side is defined as the
execution time of the invocation stub, the CAN device driver,
and the 82527 CAN controller. The protocol processing la-
tency on the receiver side is defined as a time interval from
when the first CAN message of a CORBA method invocation
is received to when the skeleton code is dispatched.

e Static memory footprint: We measured the static mem-
ory requirement of our CORBA-based middleware. It is de-
fined as the sum of the sizes of code and data sections of the
ORB core and its accompanying library. The GNU glib V1.2.1
is such a library for our CORBA-based middleware and ORBit,
and the ACE library is for the TAO ORB.

¥ of porameters

Fig. 8. Protocol processing latency.

2. EIOP Protocol Latencies

We measured the protocol processing latencies both on the
publisher side and on the subscriber side. We summarize the
measurement results in Figure 8. During our measurements,

we used the TemperatureMonitor code shown in Figure 5.
Recall that the update_temperature() method in the code has
two parameters of types char and long. Note that the protocol
processing latency of a method invocation increases as the
number of parameters increases. Thus, we measured different
protocol processing latencies varying the number of parame-
ters of the method. Even for a fixed number of parameters, the
latency may vary depending on parameter values since CCDR
uses the variable-length integer encoding scheme. During our
measurements, we used the largest possible values for the
parameters to obtain the worst-case latencies.

As shown in Figure 8, the worst_case protocol processing
latencies are less than ms when the number of parameters are
reasonably small, specically, six. This is typical in most field
bus applications of practical interest [19]. More importantly,
the pure EIOP processing latency takes up only 34.5% of the
entire sender side protocol processing latency, whereas the
CAN device driver and the bus adaptor take up 24.6% and
40.9%, respectively. Our measurements also show that the
EIOP yielded 37.5% reduction in the GIOP message traffic on
the average.
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Fig. 9. Static memory requirements of three ORBs.

2. Static memory requirement

We measured the static memory requirements of our
CORBA-based middleware, GNU ORBit V0.4.3, and mini-
mum TAO V1.0 by running the GNU size utility. We give the
measured memory sizes in Figure 9. We obtained these num-
bers by compiling the three ORB implementations with GNU
C compiler V2.8.1 targeted to Intel 386 processor. We used ~

Table 4. Memory requirements of our CORBA-based middle-
ware and ORBit modules.

Footprint Supported
Modules (bytes) . l?y
CAN- ORBit minimum
CORBA ! CORVA
(0] 7,493 19,350 yes
DIl/skeleton 0 78,026 no
Dynamic any 0 32,932 no
POA 8260 10618 partially
Others 13770 33,776 yes
Total 29,523 | 174,657
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O3 -m386 -frepo as compiler options. The ORBIt and the
minimum TAO for 1386 were built on Redhat Linux 5.1, while
our CORBA-based middleware was built on mArx. Note that
TAO (sparc) in Figure 9 denotes the memory size of TAO
hosted on the Sun Sparc workstation.

VI. Conclusion

We have presented the design and implementation of a
CORBA-based middleware for distributed embedded systems
built on the CAN bus. The design goal we had in our mind
during the development of our middleware was to minimize its
resource demand and to make it support anonymous pub-
lisher/subscriber communication without losing the IDL level
compliance to the OMG standards. To achieve these goals, we
have developed a transport protocol on the CAN and a group
communication scheme based on the well-known pub-
lisher/subscriber model. This transport protocol makes effi-
cient use of the CAN identifier structure to realize a subject-
based addressing scheme, which supports the anonymous
publisher/subscriber communication model. In the proposed
communication scheme, publishers are completely unaware of
its subscribers and simply send out messages via their own
communication ports. This scheme uses an invocation channel
to establish a virtual broadcast channel which connects pub-
lishers and a group of subscribers.

We have also customized GIOP and CDR so as to reduce
message traffic generated for each method invocation. Spe-
cifically, we have defined the compact CDR which exploits
the packed data encoding scheme and the variable-length inte-
ger representation. In addition to the CCDR, we have simpli-
fied messages types and reduced the size of the header of
GIOP messages. We have shown that the proposed EIOP
along with CCDR contributes to significantly reducing the
size of request messages. In spite of these vast modifications,
the new CORBA is still compliant to CORBA at the applica-
tion program and IDL level.

However, reduction in message traffic may lead to increase
in the protocol processing overhead due to the integer unpack-
ing and re-alignment overhead of the CCDR. This might pose
a serious performance problem to a distributed control system
built with low-end microcontrollers such as 1386 EX embed-
ded processors, unless it were not controlled. To validate our
CORBA -based middleware design from the performance point
of view, we implemented it on a CAN-based distributed plat-
form and conducted several experiments and measurements.
The experimental results showed that it incurred small method
invocation latencies (700us on the average) on the sender side
requiring only 64.3Kbytes of memory. Our experiments
clearly demonstrated that it would be feasible to use CORBA
in developing distributed embedded control systems possess-
ing severe resource limitations.

We are currently looking to extend our CORBA-based mid-
dleware so that it can provide timeliness guarantees for real-
time messages and fault-tolerance for the centralized conjoiner
object. These are challenging tasks due to the size limitation of
the CAN 2.0A identifier structure.
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