Real-Time Estimation of Multi TCSC Reference Quantity for Improvement of Transient Stability Energy Margin

과도안정도 에너지 마진 향상을 위한 다기의 TCSC 적정량 실시간 산정

  • Published : 2001.10.01

Abstract

This paper presents a method for real-time estimation of TCSC reference quantity in order to enhance the power system transient stability energy margin using artificial neural network in multi-machine system. This paper has the three parts, the first part is to determine the lines to be installed by TCSC. The seconds is to estimate the energy margin using by ANN. To get the critical energy for training, we use the potential energy boundary surface(PEBS) method which is one of the transient energy function(TEF) method. And the last is to determine the TCSC reference quantity. In order to make training data for ANN in this step, we use genetic algorithm(GA). The proposed method is applied to 39-bus, 46-line. 10-machine model system to show its effectiveness.

Keywords

References

  1. Sobajic, D. J. and Pao, Y. H. 'Artificial Neural-net Based Dynamic Security Assessment for Electric Power systems', IEEE Transaction on Power Systems, Vol. 4, pp. 297-306, 1989 https://doi.org/10.1109/59.32481
  2. S. E. Stanton, C. Slivinsky, K. Martin, J. Nordstrom, 'Application of Phasor Measurements and Partial Energy Analysis in Stabilizing Disturbances', IEEE Transaction on Power Systems, Vol. 10, No.1, February, pp. 297-306. 1995 https://doi.org/10.1109/59.373953
  3. 전기학회 논문지 no.6월 신경회로망을 이용한 On-Line 과도안정도 평가에 의한 자동재폐로 무전압시간제어 김일동;박종근
  4. 김일동, 박종근, '신경회로망을 이용한 On-Line 과도안정도 평가에 의한 자동재폐로 무전압시간제어', 전기학회 논문지, pp. 779-787, 1996년,6월호
  5. Jianmin Zhao, Atsushi Ishigame, Shunji Kawamoto, Tsuneo Taniguchi, 'Structural Control of Electric Power Networks for Transient Stability', IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994 https://doi.org/10.1109/59.336101
  6. 유석구, 문병서, 김규호, '가변 직렬콘덴서를 이용한 과도안정도 향상을 위한 유전 알고리즘 응용', 전기학회 논문지, pp. 38-45, 1997년,1월호
  7. A. A. Fouad, Vijay Vittal, 'Power System Transient Stability Analysis Using the Transient Energy Function Method', Prentice-Hall, 1992
  8. Sauer, Pai, 'Power System Dynamics and Stability', Prentice-Hall, 1998
  9. M. T. Hagan and M. Menhaj, 'Training Feed-forward Networks with the Marquardt Algorithm', IEEE Trans. Neural Networks, Vol.5, No.6, November 1994 https://doi.org/10.1109/72.329697
  10. J.S.R.Jang, 'ANFIS : Adaptive Network Based Fuzzy Inference System', IEEE Trans. Systems. Man Cybernetics, Vol.23, No.3, May/June, 1993 https://doi.org/10.1109/21.256541
  11. A. H. El-Abiad & K. Nagappan, 'Transient Stability Regions of Multimachine Power Systems', IEEE Transaction on Power Systems, Vol. PAS-85, pp 169-179, February 1966 https://doi.org/10.1109/TPAS.1966.291554
  12. C. L. Gupta, A. H. El-Abiad, 'Determination of the Closest Unstable Equilibrium State for Liapunov Methods in Transient Stability Studies', IEEE Transaction on Power Systems, Vol. PAS-95, pp 1699-1712, September/October 1976 https://doi.org/10.1109/T-PAS.1976.32269
  13. T. Athay, R. Podmore and S. Virmani, 'Transient Energy Stability Analysis', Engineering Foundation Conference-System Engineering for Power, Henniker, New Hampshire, August 21-26, 1977
  14. Hsia Dong Chang, Felix F. Wu, Pravin P. Varaiya, 'A BCU Method for Direct Analysis of Power System Transient Stability', IEEE Transaction on Power Systems, Vol. 9, No.3, August 1994 https://doi.org/10.1109/59.336079
  15. T. Athay, 'A Practical Method for the Direct Analysis of Transient Stability', IEEE Transaction on Power Systems, Vol. PAS-98, pp. 573-584, March/April 1979 https://doi.org/10.1109/TPAS.1979.319407
  16. Power System Control and Stability P.M. Anderson;A. A. Fouad
  17. Z. Michalewicz, 'Genetic Algorithms + Data Structures = Evolution Programs', 2nd, Springer Verlag, 1992
  18. P. M Anderson, A. A. Fouad, 'Power System Control and Stability', Iowa state university press, Ames, Iowa, U.S.A. 1997