In-Vitro Properties of Poly(p-dioxanone) Scaffolds

Poly(p-dioxanone) scaffold의 in-vitro특성에 관한 연구

  • 오주선 (전북대학교 섬유공학과(공업기술연구소)) ;
  • 김학용 (전북대학교 섬유공학과(공업기술연구소)) ;
  • 이세철 (전북대학교 섬유공학과(공업기술연구소)) ;
  • 이덕래 (전북대학교 섬유공학과(공업기술연구소)) ;
  • 최경은 (전북대학교 섬유공학과(공업기술연구소))
  • Published : 2001.07.01

Abstract

In this article, we have described the in-vitro degradation properties of poly(p-dioxanone)(PDO) scaffolds for tissue engineering of periodontal bone. The hydrolytic degradation of the PDO scaffolds was carried out in buffer solution at $25^{\circ}C$. the degradation behavior was evaluated by analysing the SEM photographs of degraded samples, weight loss, DSC thermograms, intrinsic viscostity, and the changes in pH of degradation medium at different intervals of immersion time during the in-vitro test. The pore size of the scaffold was approximately 10~100${\mu}{\textrm}{m}$ and cracks were observed on the surface of scaffolds after 8 weeks immersion time. The decrease in intrinsic viscosity was observed to 20%, 67% and 92% during 4 weeks, 8 weeks and, 28 weeks of immersion time. The rate of weight loss was observed faster during first 4 weeks and about 55% weight loss was observed after 28 weeks. The melting peak appeared at 108.8$^{\circ}C$ with shoulder peak at 87$^{\circ}C$ after 8 weeks and it was moved to 99.9$^{\circ}C$ after 28 weeks. The pH of the degradation medium kept initial value of 7.0 untile 20 weeks, but after that it dropped form 6.79 to 6. Further more we also observed the low molecular weight PDO scaffolds were degraded faster than the high molecular weighte PDO scaffolds.

Keywords

References

  1. Fundamental Principles of Polymeric Materials S. L. Rosen
  2. Introduction to Polymers R. J. Young;P. A. Lovell
  3. Tissue Eng. v.1 no.151 R. Langer;J. P. Vacanti;C. A. Vacanti;A. Atala;L. E. Freed;G. Vunjak-Novakovic
  4. J. Biomed. Mat. Res. v.16 no.417 C. C. Chu;N. D. Campbell
  5. U. S. Patent, 4,490,326 B. Beroff;D. R. Thomson;R. W. Mericle;W. C. Travis
  6. J. Pediatr. Orthop. v.12 no.177 N. Otsuka;J. Mah;F .W. Orr;R. Martin
  7. U. S. Patent, 5,225,520 J. Kennedy;D. S. Kaplan;R. R. Muth
  8. J. Appl. Biomet. v.1 no.57 A. U. Daniels;M. K. O. Chang;K. P. Andriano
  9. An Introduction to Materials in Medicien B. D. Ratner;A. S. Hoffman;F. J. Schoen;J. E. Lemons
  10. J. Craniofacial Surg v.8 no.87 W. S. Pietrzak;D. R. Sarver;M. L. Verstynen
  11. Biomaterials v.14 no.323 A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer
  12. Biotechnology v.12 no.689 L. Freed;G. Vunjak-Novokovic;R. J. Biron;D. B. Eagles;D. C. Lesnoy;S. K. Barlow;R. Langer
  13. J. Biomech. Eng. v.113 no.143 L.G. Cima;J. P. Vacanti;C. Vacanti;D. E. Ingber;D. J. Mooney;R. Langer
  14. J. Biomed. Mater. Res. v.48 no.602 K. P. Andriano;Y. Tabata;Y. Ikada;J. Heller
  15. Polym. v.36 no.837 K. Whang;C. H. Thomas;K. E. Healy;G. Nuber
  16. J. Control. Res. v.4 no.155 S. J. Holland;B. J. Tighe;P. L. Gould
  17. J. Biomed. Mat. Res. v.27 no.153 H. L. Lin;C. C. Chu;D. Grubb
  18. J. Biomed. Mat. Res. v.46 no.236 H. L. Lin;C. A. Garcia;A. Mikos
  19. Surg. Gynecol. Obstet. v.153 no.497 J. A. Ray;N. Doddi;D. Regula;J. A. Williams;A. Melveveger
  20. J. Biomed. Mater. Res. v.20 no.613 C. C. Chu;A. Browning
  21. Plast. Reconstr. Surg. v.81 no.672 C. Dahlin;A. Linde;J. Gottlow;S. Nyman
  22. U. S. Patent. 4,052,988 N. Doddi;C. C. Versfelt;D. Wasserman
  23. Tissue Eng. v.1 no.41 M. J. Yaszemski;R. G. Payne;W. C. Hayes
  24. Biomaterials v.13 no.594 M. Therin;P. Christel;S. Li;H. Garreau;M. Vert
  25. J. Biomed. Mater. Res. v.27 no.153 H. L. Lin;C. C. Chu;D. Grubb
  26. Advances in Polym. Sic. v.12 no.214 R. C. Thomson;M. C. Wake;M. J. Yaszemsk;A. G. Mikos
  27. Biomaterials v.20 no.35 S. Li;S. Mccarthy
  28. Biomaterials v.12 no.292 I. Engleberg;J. Kohn
  29. Degradation Structure and Properties of Fibrous Nonwoven Poly(glycolic acid) Scaffolds for Tissue Engineering P. X. Ma;R. Langer;A. G. Mikos(ed.);K. W. Leong(ed.);M. J. Yazemski(ed.);J. A. Tamada(ed.);M. L. Radomsky(ed.)