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HADAMARD AND DRAGOMIR-AGARWAL
INEQUALITIES, HIGHER-ORDER
CONVEXITY AND THE EULER FORMULA

Li. DEDIC, C. E. M. PEARCE, AND J. PECARIC

ABSTRACT. We obtain bounds relating to Euler’s formula for the
case of a function with higher-order convexity properties. These
are used to derive estimates of the error involved in the use of the
trapezoidal formula for integrating such a function.

1. Introduction

One of the cornerstones of real analysis is the Hadamard inequality,
which states that if [a,b] (a < b) is a real interval and f : [a,b) > R a
convex function, then

((552) <3 [ w320

Over the last decade this pair of inequalities has been improved and
extended in a number of ways, including the derivation of estimates of
the differences between the two sides of each inequality.

Recently Dragomir and Agarwal [3] have made use of the latter to
derive bounds for the error term in the trapezoidal formula for the nu-

/|9
merical integration of an integrable function f such that f| is convex

for some ¢ > 1. Some improvements to their results have been derived
in [4]. In particular, the following basic result was obtained for the dif-
ference between the two sides of the right-hand Hadamard inequality.

THEOREM A. Suppose f : I — R is a differentiable mapping on
/4
I°CR,abeI° witha < b. If ¢ > 1 and the mapping 'f # is convex
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on [a,b], then

pa [[f @] +|fm]"
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Such results suggest the possibility of obtaining similar bounds for
functions known to have higher-order convexity properties. In this ar-
ticle we address this question. We adopt the terminology that f is
(j + 2)—convex if f () is convex, so ordinary convexity is two—convexity.
A corresponding definition applies for (j + 2)—concavity.

In the following section we derive some basic results for the Euler
formula, which is important in a variety of applications. In Section 3 we
give as an application the derivation of error estimates with use of the

trapezoidal formula. This estimates an integral f;+nh f(x)dx by

n—1
T(f;h) :=h[%f(a)Jer(a—Hch)+%f(a+nh)}.

k=1

Our starting point, the Euler formula, states that provided f can be
differentiated a sufficient number of times,

a+nh
/ f@dr = T(fh) -
n—1 .1
1hz Y / Por (8) £ (a + h(t + k) dt
k=070

(see [2, p. 275]). Here By(:) is the n—th Bernoulli polynomial and
P,(t) = [Bn(t) — By)/n!, where B, = By(0) is the n-th Bernoulli num-
ber. The empty sum is interpreted as zero for r = 1. This relation
provides an estimate of the integral of a function f over an interval in
terms of the trapezoid term T, values of derivatives of f at the end
points of the interval and the somewhat inaccessible term involving Pa;.
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It is convenient to use a variant form of this result [2, p. 274] which
states that

[ @y = %-‘fma) +50)

r— 1

(L.1) }: 2k)|B2k [f(Zk—l)(b) _ f(2k—1)(a)]

k=1
+ (- a)”“/ Por (8) £ (a4t (b= a)) dt.
The merit of this version is that the term in P,, is more manageable.
The thrust of Section 2 is putting bounds on this term.
The relevant key properties of the Bernoulli polynomials are
B;z(t) = an—l(t)a (n > 1)
Bp(1+1) = Bu(t) =nt"™!, (n>0)
Bn(1-1t) = (=1)"Byu(t), (n>0)

(see, for example (1, Chapter 23]). For convenience we set by, = B, /(2r)!
(r > 0). We note that Py, (t) does not change sign on (0,1). We readily
verify that

1
Bory1(1) = Boryr Bo,
12 Pr t d = — = — e
(12) /0 2 (t)dt @r + 1)1 @i =

Since (—1)"*!B,, > 0, we have (—1)" Py, (t) > 0.

2. Basic results for the Euler formula

In the remainder of the paper we shall use the notation

b — Q
I =(_1y { / f(@dz — 2 f(a) + )

+Zsz(gk—)|a [f(zk () — f(anl)(a)]}'

As above, the empty sum for r = 1 is interpreted as zero.
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We begin with a result of Hadamard type.

THEOREM 1. If f : [a,b] — R is a (2r + 2)—convex function (r > 1),
then

_ gyzr+11Brl cen (L@)
(b= a)™™ o’ 2

ars1 |Bar| f®7(a) + F@7)(b)
<L<(b-a 2r)! )

(2.1)

If f is a (2r + 2)-concave function, then the reverse inequality applies.

Proof. By (1.2),

1 1
/ tPQr(t)dt + / (1 - t)P27-(t)dt
0

0

1
= / Py (t)dt = —by,.
0

Also Ba,(1 —t) = Bo.(t) and so P (1 — t) = Par(t), whence
1 1
/ t Py (£)dt = / (1 — t)Pyy(t)dt = —bzr /2.
0 0

If f is (2r + 2)—convex, then f (2r) is convex, so that

F) (g +t(b—a)) = FP[(1 - t)a+ tb]
< tfOI(b) + (1 - 1) (a).

Hence from (1.1) we have

b
I < (b—a)* / (—1)" Por(t) [tf<2’”)(b)+(1—t)f<2”(a)] dt

£ (a) + 177 ()
; .

— (_1)r+1(b . a)2r+1b2r
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On the other hand, we have from Jensen’s theorem and the convexity of
@) that

I = (b~a* /1(~1)"P2r(t)f(2”)(a +1(b - a))dt
0

> (b—a)*! ( /0 1(—1)’"Pzr(t>dt) X

e JH(=1)7Pon(t)(a + t(b — a))dt
Jo (=1) Py (t)t
Bo,| a+b
= (h— 2r+1| 2rl p(2r) (@70 )
A Tl 2
The result for the convex case follows. Obvious modifications to the
proof provide the corresponding concavity result. O

REMARK 1. If f is a 4-convex function, then since By = 1/6, we may
substitute for I; in (2.1) to derive

(b ;2a)3f,, (a 42- b)

IA

a b
[F(@) + £(B)] — / f(2)dz

(b= f(a)+ " (0)

- 12 2
If f is convex, then the leftmost expression in this inequality is non-
negative. We thus have two-sided nonnegative bounds for the central
expression in this inequality if f happens to be both 4—convex and con-
vex.

THEOREM 2. Suppose f : [a,b] — R is a real-valued (2r)-times
differentiable function such that I f (zr)l is convex for some q > 1. Then

L] < (b— a)?+! | By | If(”)(a)lq + ,f(Zr)(b)Iq:l l/q-

(2r)!

2

@) (atb
(4]

If ]f(QT)‘q is concave, then

r B T
(2.2) L] < (b - a)? “‘(—2—7"37!'
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Proof. From (1.1), we have
|I:|

1
< 6= o [ |Pu(o] |[fO 0+ (1~ e
< (b P [/01 | Por (2)] dt} o

1 1/q
<[ [ P01+ 0= 00) al
0

by the power-mean inequality. Hence by Jensen’s inequality

\I| < (b—a)?r+! (/1 |P2r(t)|dt>1_1/q
</ |Par (2) lf(2r) (b) l +(1-1) lf(2'r) (a)}q] dt)l/q

1-1/q
/ P2r (t)dt
0

<(jreof | [ e +|@f

If | f (zr)lq is concave, then

— (b _ a)2r+1

>1/q

/ "1 - 1) Pty

0

|I,| < 2r+1/ | Par(t lf (2r) a+t(b—a))}dt
b— g2+t ( Py, d)
s (b-a) /0 | Py (1) dt
% I:f(zr) (fol | Por ()] (@ + t(b — a))dt) q} i/q

S Py ()] dt

T |B T‘ 2r a+b

(b—a)? +1f—2_«,% £ (_2_>l7

and the theorem is proved. .

REMARK 2. For (2.2) to be satisfied it is enough to suppose that
| f®] is a concave function. For if |g|? is concave on [a,b] for some
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q 2 1, then for z,y € [a,b] and X € [0, 1]
gz + 1 =)l 2 Ag(@)|?+ (1= \) [g(y)|*
2 (Alg@)+ 1 =N lgw))?,
by the power-mean inequality. Therefore |g| is also concave on [a, b].

3. The trapezoidal formula

To obtain estimates of the error in the trapezoidal formula, we apply
the results of the previous section on each interval from the subdivision

[a,a+b],[a+h,a+2h], .. [a+(n— 1)h,a + nh.

We define
a+nh r—1 BQkhzk (2k—1) (2k—1)
Jp = /a f(IE)dl'—T(f, h)—l—]; W [f 1 (a + nh) - f 2k—1 (a)]
and 1
M(fih) = h S f (a+ kh + %h) .
k=1

THEOREM 3. If f : [a,a + nh] — R is a (2r + 2)-convex function,

then
2r|B2T' (2r). < (—1Y']. < 27"327', (2r),
WG MU < (- < Bl e g,

If f is (2r + 2)-concave, the inequality is reversed.

Proof. The desired result follows from Theorem 1 since

Jo= >4 / f(z)da

m=1 a+(m—1)h

(3.1) 1
r— szh2k

= (2k)!

x [f(%_l)(a—l—mh) — (g 4 (m - 1)h)} } 0
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THEOREM 4. Suppose [ : [a, a+nh] — R is a (2r)-times differentiable
function (r > 1) such that lf(gr)iq is convex for some q > 1. Then

/q
ors1 | Barl n |f(2r)(a+nh)\q+‘f(Zr)(a)‘q 1
PAE O W;{ :
< hQng—;;—jmax{‘f(w)(a)‘,‘f(zr)(anhnh)‘}.

If ‘f(QT)\ is concave, then

2r | Bar| (2r)
=B

h).

Proof. From (3.1), we have

n

<Y

m=1

a+mh h
/ f(ﬂv)d:c——[f(a+(m,—1)h)+f(a+mh)]

+{(m—1)h 2
r—1

2k
+2 —“Bé’ﬁz (£ @t mh) = £ (@t (m = 1))

- T ‘B 'rl f(zr)(a+mh)q+ f(2r)(a+(m—l)h)q 1/q
< 3 wrn (l i N

m=1

by Theorem 2. Hence by the means inequality
2r+1 | Bar | - (2r) (2r)
| < h Wm;max{\f (a+mh)},lf (a+(m—1)h)‘}.

The first part of the theorem now follows from the convexity of | £ \q.
The second part follows similarly.
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