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ON THE TRANSFINITE POWERS OF THE
JACOBSON RADICAL OF A DICC RING

ToMA ALBU AND MARK L. TEPLY

ABSTRACT. A ring is a DICC ring if every chain of right ideals in-
dexed by the integers stabilizes to the left or to the right or to both
sides. A counterexample is given to an assertion of Karamzadeh
and Motamedi that a transfinite power of the Jacobson radical of
a right DICC ring is zero. We determine the behavior of the trans-
finite powers of the Jacobson radical relative to a torsion theory
and consequently can obtain their correct behavior in the classical
setting.

Introduction

The Double Infinite Chain Condition (DICC for short) was intro-
duced by M. Contessa [5], [6], [7] for modules over a commutative ring,
extended by B. Osofsky [10] to objects in a Grothendieck category, and
studied by O.A.S. Karamzadeh and M. Motamedi [9] for modules over
an arbitrary ring. Recently, T. Albu and M. Teply [3] extended some
results from these papers to a more general setting. One of the results
of Karamzadeh and Modamedi that was not generalized in [3] was [9,
Proposition 1.2]: if J is the Jacobson radical of a DICC ring R, then
J® = 0 for some ordinal o. Unfortunately, that proposition is not always
true. In this paper, we provide a counterexample to {9, Proposition 1.2].
Then we determine the behavior of the transfinite powers of the Jacob-
son radical relative to a torsion theory in the more general setting of
[3] and consequently the correct result can be obtained for the classical
setting of [9].
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Terminology

Let R denote a ring with identity element. All modules will be unitary
right R-modules.

We will need concepts from torsion theory that can be found in (1], [2],
[4], and [8]. Throughout, 7 = (7, F) is a hereditary torsion theory on the
category Mod-R of all unitary right R-modules, and 7(M) denotes the
T-torsion submodule of a right R-module M. Note that 7(R) = 7(RRg)
is a two-sided ideal of R and that M/7(M) is T-torsionfree for each
right module M. A submodule N of M is 7-dense (in M) if 7(M/N) =
M/N, ie., if M/N is 7-torsion; it is 7-closed if 7(M/N) = 0, i.e., if
M/N is r-torsionfree. The 7-closure of N (in M) is the submodule
N = (N{CIN € C C M,7(M/C) = 0}. It is the smallest 7-closed
submodule of M that contains N and also the largest submodule of M
in which N is 7-dense. Also, M is said to be 7-finitely generated if there
exists a finitely generated submodule F of M such that M/F € T.

A module M is called 7-noetherian (7-artinian) if it satisfies the
ascending (descending) chain condition on 7-closed submodules. We use
7 = 0 to denote the torsion theory whose only torsion module is the
zero module; i.e., every module is T-torsionfree. A module M is said to
be 7-DICC if any infinite chain of 7-closed submodules indexed by the
integers Z stabilizes to the right or to the left or to both sides; i.e., for
any chain

L CM o CM i CMyCM CMC ...
of 7-closed submodules of M, there exists m € Z such that M;y; = M;
for all i > m or for all i < m. A module is said to be DICC if M is
7-DICC for the trivial torsion theory 7 = 0. A ring R is said to be
7-DICC (DICC) if R is a 7-DICC (DICC) right R-module.

The 7- Krull dimension k(M) of a right R-module M is the deviation
of the poset of T-closed submodules of M. Thus, k(M) = —1if M is
r-torsion, and k,(M) = « for an ordinal o > —1 if k(M) £ a and,
given any descending chain

M>C,DC,D--DC;DCi41 D -

of (7-closed) submodules C; of M, k.(C;/Ci+1) < a for all but finitely
many i. Note that for 7 = 0, k(M) is the usual Krull dimension K (M)
of M. A t-torsionfree right R-module M # 0 is 7-critical if it has 7-
Krull dimension and k. (M/N) < k.(M) for any submodule 0 # N C M.
A r-critical module M with k(M) = « is called a-7-crifscal. We also
call a O-7-critical module 7-simple. The right ideals K such that R/K



Transfinite powers of Jacobson radical of a DICC ring 1119

are T-simple are called the 7-maximal ideals. We define the 7-Jacobson
radical as the intersection of the 7-maximal right ideals (or R if no 7-
maximal right ideals exist.) As in [9], we define the transfinite powers
of J by J?*+! = JAJ and, for a limit ordinal vy, J¥ = NgeyJ?.

For a 7-torsionfree module M, define Soc, (M) to be the sum of the
7-simple submodules of M (or 0 if there are no 7-simple submodules.)
Then we define the T-Loewy series of a module M by transfinite recur-
sion:

SO(M) = 7(M), SP*N(M)/SP (M) = Soc,(M/SE(M)),
and
Sy =\ SZ (M)
B<y
when v is a limit ordinal.

As in [1] a torsion theory 7 of R is called I-invariant for an ideal I if
I/DI is T-torsion for each 7-dense right ideal D. From [1, Lemma 6.1]
we have the equivalent conditions:

(a) 7 is I-invariant;

(b) AT C AI for every right ideal A of R;

(c) AI C AI for every right ideal A of R;

(d) if KI =0 for a 7-dense submodule K of a 7-torsionfree module M,
then M1 = 0.

Results

Now that we have given the basic terminology and notation that we
will use, we are ready to present our example and our main result.

EXAMPLE 1. (Counterexample to [9, Proposition 1.2].) Let L be the
localization of the integers Z at a nonzero prime ideal (p), and let R be
the ring of all 2 x 2 matrices of the form:

Ty

0 z )’
where z € L and y € Z(p™), the smallest divisible abelian p-group. We
will show the three conditions of {9, Theorem 1.2] (cf. [3, Corollary 4.6])
for a ring to be DICC hold for R. Let

A:(g Z(f)’m)).
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Since A is artinian as an abelian group, it is also artinian as a right
R-module. Also, R/A = L is (right) noetherian. Finally, suppose that
Pr C R such that P € A. We claim that A C P. Since P € A, then P
contains an element of the form

Py
o pm™

Given any x € Z(p™), the divisibility of Z(p*>) gives w € Z(p°°) such
that wp™ = z. Hence

o (B ()

for each z € Z(p>™). Thus R/(AN P) = R/A = L is noetherian, and
hence R is a DICC ring.
Now we compute directly that

J":{(pgx pgm) lxeL,ye%(p‘”)}

for each n < w,J¥ = NJ" = A, and J*t! = AJ = A by an equation
symmetric to (). Hence J% = A for all 8 > w. In particular, J% # 0
for any 3, which contradicts the claim in [9, Proposition 1.2].

In Example 1, A%2 = 0. In [9] the proof of Proposition 1.2 seems to
use the formula (J*)" = J*". Although the notation is suggestive of
this formula, it is not necessarily true for limit ordinals, as our Example
1 demonstrates.

The true facts about the transfinite powers of the Jacobson radical
can be obtained from the following theorem by setting 7 = 0.

THEOREM 2. Let R be a 7-DICC ring for a torsion theory T and let J
be the T-Jacobson radical of R. Let J* be the first stationary transfinite
power of J (i.e., J* = JoT1)

(1) If J is T-finitely generated, then J* C T7(R).

(2) If J* is not T-finitely generated, o < w, and T is J*-invariant, then
J* C 7(R).

(3) If J* is not T-finitely generated and T is I-invariant for each I C
Je, then J* - J* C 7(R).

We prove Theorem 2 by establishing a sequence of five lemmas.
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As in [4], a ring R with torsion theory 7 is called 7-max if every
7-finitely generated R-module with a proper 7-closed submodule has a
maximal 7-closed submodule.

LeMMA 3. If R is 7-DICC, then R is T-max.

Proof. Let M be r-finitely generated; say > 1 ; 2;R is 7-dense in
M. Let N be a proper 7-closed submodule of M. Then at least one
v ¢ Nysay 1 ¢ N. If zyR+ N # M, there exists at least one xj ¢
z1R + N. Inductively, we eventually find a 7-closed submodule N’ and
an element x, ¢ N’ such that z,R + N’ = M. Since R is 7-DICC, so is
its homomorphic image (z,R + N')/N’.

If (zp,R+ N')/N' is T-artinian, then this cyclic module has a -Loewy
series whose length is not a limit ordinal. So (z,R + N’)/N’ must have
a maximal 7-closed submodule K/N’; whence K is a maximal 7-closed
submodule of M.

If (z,R + N')/N’ is not 7-artinian, [3, Corollary 4.6] implies that
(zpR+N')/N' has a maximal artinian submodule A/N’ such that (zpR+
N')/Ais T-noetherian. Thus (z,R+ N’)/A must have a proper maximal
7-closed submodule K’/A; whence K’ is a maximal 7-closed submodule
of M. d

LeEmMA 4. Conclusion (1) of Theorem 2 is true.

Proof. Since R has 7-DICC, R has 7-max by Lemma 3. Hence
the Generalized Nakayama’s Lemma (see [11] or [4, Proposition 2.3.15])
implies that J* C 7(R). (]

LEMMA 5. If M is a 7-DICC module and N is T-closed in M, then
(SY(M/N))J =0, where J is the T-Jacobson radical of R.

Proof. Since M is a 7-DICC module, then M /N has finite uniform
dimension via [3, Proposition 4.3]. Hence there exist T-simple modules
S51,82,...,8n such that @, S; is essential in S1(M). Choose K;
maximal with respect to @i# S; € K; and K; N S; = 0. Then each S;
is essential in S}H(M/N)/K; and S}(M/N)/K; is T-simple. Therefore,

(SH(M/N)/K;)J =0

for each j < n. But S}(M/N) embeds in D1 (SH(M/N))/K;; so
SYM/N) J =0, as desired. O

LEMMA 6. Conclusion (2) of Theorem 2 is true.
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Proof. Since o < w, then J° is an idempotent ideal of R. Since
J% is not 7-finitely generated, then J* is T-artinian by [3, Proposition
4.7). Note that S}(R)J* C 7(R) by Lemma 5. Inductively, suppose
that SE(R)J“ C 7(R) for each 8 < 7. If ¥ is not a limit ordinal, then
Lemma 5, the idempotence of J%, and the induction hypothesis imply
that S7(R)J* C 7(R). If v is a limit ordinal, then (U,3<,YS§3(R))J°‘ -
7(R) by induction; so (S7(R))J* € 7(R) by the J*-invariance of 7.
Thus S7(R)J* C 7(R) for all v.

Since R is a 7-DICC ring, there is a T-artinian ideal A of R such that
R/A is T-noetherian. Since A C S2(R) for some A, then AJ* C 7(R).
Let

A=CoCC1CCQC"-CCk=R

be a chain of right ideals C; such that each C;41/C; is B;-T-critical for
some ordinal 3;, where 0 < 8; < 2 < ... < Bi. If we show that DJ* =0
for any (3-7-critical module D, then J* = R(J*)*+1 C AJ™ C 7(R), as
desired.

Let D be 3-r-critical. We have already seen that DJ* = 0 when
B8 = 0; so we may assume § > 1. If DJ® # 0, then DJ%* contains a
7-simple submodule S, as J¢ is T-artinian. Since submodules of 3-7-
critical modules are (G-r-critical, then S is 3-7-critical; whence 8 = 0,
which is a contradiction. O

LEMMA 7. Conclusion (3) of Theorem 2 is true.

Proof. Since J® is not 7-finitely generated, then J¢ is T-artinian by
[3, Proposition 4.7]. Consider the descending chain of ideals:

J*DJ-J*DJ*. gD ...

Since J® is T-artinian, there exists k < w such that JkJo = Jk+1jo .
We now show inductively that S7(J*)-JkJ« C 7(R) for each ordinal
~v. The case v = 1 is immediate from Lemma 5. Inductively, assume that
S8(Jo)JRJe for all 8 < 7. Ify = 3+1, then by the J**!.J%invariance of
7, Lemma 5, and the induction hypothesis, we have (82! (JO) (JkJe) =
(SEH(Ja))(JkHJa) C SAHI(Jay(Jk+1 o) C SB(Jo)JkJx C T(R) =
7(R). Finally, if  is a limit ordinal, then (., S7(J))J5J* C 7(R)
by induction; so S7(J%) - JkJo C 7(R) by the JkJo-invariance of 7.
Since J® is 7-artinian, then J* = S}(J?) for some A. As a conse-

quence of the previous paragraph, associativity and the definition of J<,
we now have 7(R) D JX(JFJ¥) = (JoTF)J* = J* - J%, as desired. [
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