Modelling Strength and Ductility of Nanocrystalline Metallic Materials

  • Kim, Hyoung-Seop (Department of Metallurgical Engineering, Chungnam national University)
  • Published : 2001.09.01

Abstract

The effect of grain refinement of the strength and ductility of metallic materials is investigated. A model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanisms: dislocation glide and mass transfer by diffusion. The model was exemplified by simulating uniaxial tensile deformation of Cu down to the nanometer grain size. The results confirm the observed strain hardening behaviour and a trend for reduction of ductility with decreasing grain size at room temperature.

Keywords

References

  1. Acta Mater. v.43 N.Wang;Z.Wang;K.T.Aust;U.Erb
  2. Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics H.J.Frost;M.F.Ashby
  3. Scripta Metall. Mater. v.26 G.E.Fougere;J.R.Weertman;R.W.Siegel
  4. Scripta Metall. Mater. v.24 K.Lu;W.D.Wie;J.T.Wang
  5. J. Iron and Steel Inst. v.174 N.J.Petch
  6. Mechanical Metallurgy G.E.Dieter
  7. J. Mater. Sci v.36 M.Furukawa;Z.Horita;M.Nemoto;T.G.Langdon
  8. Prog. Mater. Sci. v.45 R.Z.Valiev;R.K.Islamgaliev;I.V.Alexandrov
  9. Acta Mater. v.48 H.S.Kim;Y.Estrin;M.B.Bush
  10. Mater. Sci. Eng. v.316A H.S.Kim;Y.Estrin;M.B.Bush
  11. Mater. Sci. Eng. v.276A H.S.Kim;Y.Estrin;M.B.Bush
  12. Nanostruc Mater. v.5 J.E.Carsley;J.Ning;W.M.Milligan;S.A.Hackney;E.C.Aifantis
  13. Unified Constitutive Laws of Plastic Deformation Y.Estrin;A.S.krausz(ed.);K.Krausz(ed.)
  14. Acta Metall. v.32 Y.Estrin;H.A.Mecking
  15. Prog. Mater. Sci. v.33 H.Gleiter
  16. Scripta Mater v.37 C.J.Youngdahl;P.G.Sanders;J.A.Eastman;J.R.Weertman
  17. Processing and Properties of Nanocrystalline Materials P.G.Sanders;J.A.Eastman;J.R.Weertman;C.Suryanarayana(ed.);J.Singh(ed.);F.H.Froes(ed.)
  18. J. Mater. Res. v.11 R.Suryanarayana;C.A.Frey;S.M.L.Sastry;B.E.Waller;S.E.Bales;W.E.Buhro
  19. J. Mater. Res. v.6 G.W.Nieman;J.R.Weertman;R.W.Siegel
  20. Acta Mater. v.45 P.G.Sanders;J.A.Eastman;J.R.Weertman
  21. Metastable and Nano-cryst. Mater. v.2-6 C.C.Koch;T.R.J.Malow
  22. Nanostruct. Mater. v.10 T.Mukai;M.Kawazoe;K.Higashi
  23. Nanostruct. Mater. v.1 G.W.Nieman;J.R.Weertman;R.W.Siegel
  24. Physical Phenomena in Granular Materials B.Gunther;A.Baalmann;H.Weiss;G.D.Cody(ed.);T.H.Geballe(ed.);P.Sheng(ed.)
  25. Acta Metall. Mater. v.42 V.T.Gertsman;M.Hoffmann;H.Gleiter;R.Birringer
  26. Acta Mater. v.42 R.Z.Valiev;E.V.Kozlov;Yu.F.Ivanov;J.Lian;A.A.Nazarov;B.Baudelet
  27. Appl. Phys. Lett. H.S.Kim;Y.Estrin
  28. Acta Metall. v.15 E.W.Hart