Membrane Transporter Genes in Cephabacin Biosynthetic Gene Cluster of Lysobacter lactamgenus

  • Nam, Doo-Hyun (College of Pharmacy, Yeungnam University) ;
  • Lim, Si-Kyu (Institute of Biotechnology, Yeungnam University) ;
  • Chung, Min-Ho (College of Pharmacy, Yeungnam University) ;
  • Lee, Eung-Seok (College of Pharmacy, Yeungnam University) ;
  • Sohn, Young-Sun (Biochemical Engineering Program, University of California) ;
  • Dewey, D.Y. Ryu (Biochemical Engineering Program, University of California)
  • Published : 2001.02.01

Abstract

In order to clone the peptide synthetase gene form Lysobacter lactamgenus IFO 14,288, the gene fragments were amplified using primers for the adenylation domain and the thionylation domain of the peptide synthetase genes in other organisms by polymerase chain reaction (PCR). The resulting 0.5-kb fragment was cloned in a pGEM-T vector, and the nucleotide sequences were determined. Six different PCR products were obtained; three were identified to be a part of L-$\alpha$-aminoadipyl-L-cysteinyl-D-valine (ACV) synthetase and three to be other peptide synthetases. Using each of the two different classes of PCR products as mixed probes, a cosmid library of L. lactamgenus chromosomal DNA constructed in a pHC79 vector was screened by an in situ hybridization procedure, and one positive clone was selected which was bound by peptide synthetase gene fragments as well as ACV synthetase gene fragments. The partial sequence analysis formt he obtained pPTS-5 cosmid showed th presence of more than two open reading frames. These were for two putative membrane transporters, which were homologous with several integral membrane proteins including the ABC transporter ATP-binding protein of E. coli (YbjZ) and the metal ion uptake protein of Bacillus subtilis (YvrN). A 45% homology was also found between the two transporter proteins at the carboxy terminus. Through a hydropathy analysis and transmembrane analysis. 4-5 transmembrane domains were found in these two proteins. When the genes were expressed in Escherichia coli, the gene products inhibited the hose cell growth, probably due to the disturbance of the membrane transport system.

Keywords

References

  1. Bio/Technol. v.11 δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase, the multienzyme integrating the four primary reactions in β-lactam biosynthesis, as a model peptide synthetase Aharonowitz, Y.;J. Burgmeyer;J. M. Cantoral;G. Cohen;A. L. Demain;U. Fink;J. Kinghorn;H. Kleinkauf;A. MacCabe;H. Palissa;E. Pfeifer;T. Schwecke;H. van Liempt;H. von Doehren;S. Wolfe;J. Zhang
  2. Science v.277 The complete genome sequence of Escherichia coli K-12 Blattner, F. R.;G. Plunkett Ⅲ;C. A. Bloch;N. T. Perna;V. Burland;M. Riley;J. Collado-Vides;J. D. Glasner;G. K. Rode;G. F. Mayhew;J. Gregor;N. W. Davis;H. A. Kirkpatrick;M. A.Goeden;D. J. Rose;B. Mau;Y. Shao
  3. Microbiol. Mol. Biol. Rev. v.62 Molecular regulation of β-lactam biosynthesis in filamentous fungi Brakhage, A. A.
  4. Science v.282 Harnessing the biosynthetic code: Combination, permutation, and mutations Cane, D. E.;C. T. Walsh;C. Khosla
  5. Int. J. Oral Biol. v.22 Cloning and sequencing of a mutated locus that affects fimbrial tuft organization and corncob formation in Streptococcus crista CC5A Correia, F. F.;R. Lamont;M. Bater;B. Rosan;J. M. DiRienzo
  6. J. Bacteriol. v.179 Pristinamycin I biosynthesis in Streptomyces prisinaespiralis: Molecular characterization of the first two structural peptide synthetase genes Crecy-Lagard, V.;V. Blanc;P. Gil;L. Naudin;S. Lorenzon;A. Famechon;N. Bamas-Jacques;J. Crouzet;T. Thibaut
  7. Prot. Eng. v.10 Prediction of transmembrane alpha-helices in procaryotic membrane proteins: The dense alignment surface method Cserzo, M.;E. Wallin;I. Simon;G. von Heijne;A. Elofsson
  8. J. Mol. Biol. v.179 Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Eisenberg, D.;E. Schwarz;M. Komaromy;R. Wall
  9. Science v.281 Complete genome sequence of Treponema pallidum, the syphilis spirochete Fraser, C. M.;S. J. Norris;G. M. Weinstock;O. White;G. G. Sutton;R. Dodson;M. Gwinn;E. K. Hickey;R. Clayton;K. A. Ketchum;E. Sodergren;J. M. Hardham;M. P. McLeod;S. Salzberg;J. Peterson;H. Khalak;D. Richardson;J. K. Howell;M. Chidambaram;T. Utterback;L. McDonald;P. Artiach;C. Bowman;M. D. Cotton;C. Fujii;S. Garland;B. Hatch;K. Horst;K. Roberts;L. Watthey;J. Weidman;H. O. Smith;J. C. Venter
  10. Biochemistry v.37 The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis Gehring, A. M.;I. Mori;R. D. Perry;C. T. Walsh
  11. J. Antibiot. v.37 Cephabacins, new cephem antibiotics of bacterial origin Ⅱ. Isolation and characterization Harada, S.;S. Tsubotani;H. Ono;H. Okazaki
  12. Comput. Appl. Biosci. v.8 CLUSTAL V: Improved software for multiple sequence alignment Higgins, D. G.;A. J. Bleasby;R. Fuchs
  13. Nature Biotechnol. v.17 Nurturing nature: Engineering new antibiotics Kennedy, J.;C. R. Hutchinson
  14. J. Ferment. Bioeng. v.80 Cloning and expression of isopenicillin N synthase gene from Lysobacter lactamgenus YK90 Kimura, H.;M. Suzuki;Y. Sumino
  15. Appl. Microbiol. Biotechnol. v.44 Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90 Kimura, H.;M. Izawa;Y. Sumino
  16. Appl. Microbiol. Biotechnol. v.45 Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90 Kimura, H.;H. Miyashita;Y. Sumino
  17. J. Mol. Biol. v.157 A simple method for displaying the hydropathic character of a protein Kyte, J.;R. F. Doolittle
  18. Appl. Microbiol. Biotechnol. v.50 New aspects of genes and enztmes for β-lactam antibiotic biosynthesis Martin, J. F.
  19. Mol. Microbiol. v.3 Cloning and characterization of β-lactam biosynthetic genes Miller, J. R.;T. D. Ingolia
  20. Antimicrob. Agents Chemother. v.34 Molecular biology of penicillin and cephalosporin biosynthesis Queener, S. W.
  21. Current Protocols in Molecular Biology v.15 Riggs, P.;F.M. Ausebet;D.M. Coen;S.J. Scharf
  22. J. Microbiol. Biotechnol. v.7 Lysine ε-aminotransferase, the initial enzyme of cephalosporin biosynthesis in Actinomycetes Rius, N.;A. L. Demain
  23. Phil. Trans. Roy. Soc. London v.332 Polyketide synthase complexes: Their structure and function in antibiotic biosynthesis Robinson, J. A.
  24. Biotechnol. Letters v.14 Nutritional requirements of Lysobacter lactamgenus for the production of cephabacins Roh, J. W.;J. H. Bang;D. H. Nam
  25. J. Microbiol. Biotechnol. v.7 Cloning of isopenicillin N synthase gene from Lysobacter lactamgenus Ryu, J. K.;D. H. Nam
  26. Molecular Cloning. A Laboratory Manual Sambrook, J.;E. F. Fritsch;T. Maniatis
  27. J. Biol. Chem. v.270 Molecular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA Stachelhaus, T.;M. A. Marahiel
  28. J. Antibiot. v.38 Cephabacin $M_1-6$, new 7-methoxycephem antibiotics of bacterial origin Tsubotani, S.;T. Hida;H. Ono;S. Harada
  29. Peptide Res. v.7 A general approach for identifying and cloning peptide synthetase gene Turgay, K.;M. A. Marahiel
  30. EMBO J. v.8 Distantly related sequences in the alpha-subunits and beta-subunits of ATP synthase, myosin kinases and other ATP-requiring enzymes and a common nucleotide binding fold Walker, J. E.;M. Saraste;M. J. Runswick;N. J. Gay
  31. Microbiology v.144 The yvsA-yvqA (293°-289°) region of the Bacillus subtilis chromosome containing genes involved in metal ion uptake and a putative sigma factor Wipat, A.;S. C. Brignell;B. J. Guy;M. Rose;P. T. Emmerson;C. R. Harwood