Biodegradation of Hydrocarbons by an Organic Solvent-Tolerant Fungus, Cladosporium resinae NK-1

  • Oh, Ki-Bong (Natural Products Research Institute, Seoul National University) ;
  • Mar, Woong-Chon (Natural Products Research Institute, Seoul National University) ;
  • Chang, Il-Moo (Natural Products Research Institute, Seoul National University)
  • Published : 2001.02.01

Abstract

A kerosene fungus of Cladosporium resinae NK-1 was examined for its ability to degrade individual n-alkanes and aromatic hydrocarbons by gas chromatography-mass spectrometry, and its organic solvent-tolerance was investigated by making use of the water-organic solvent suspension culture method. It grew on a wide range of solvents of varying hydrophobicities and it was found to have tolerance to various kinds of toxic organic solvents (10%, v/v) such as n-alkanes, cyclohexane, xylene, styrene, and toluene. A hydrocarbon degradation experiment indicated that NK-1 had a greater n-alkane degrading ability compared to that of the other selected strains. C. resinae NK-1, which could utilize 8-16 carbon chain-length n-alkanes of medium chain-length as a carbon source, could not assimilate the shorter chain-length n-alkanes and aromatic hydrocarbons tested so far. The n-alkane degrading enzyme activity was found in the mycelial extract of the organism.

Keywords

References

  1. Agric. Biol. Chem. v.55 Preparation of organic solvent-tolerant mutants from Escherichia coli K-12 Aono, R.;K. Aibe;A. Inoue;K. Horikoshi
  2. Appl. Environ. Microbiol. v.60 Oxidative bioconversion of cholesterol by Pseudomonas sp. strain ST-200 in a water-organic solvent two-phase system Aono, R.;N. Doukyu;H. Kobayshi;H. Nakajima;K. Horikoshi
  3. Appl. Environ. Microbiol. v.63 Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12 Aono, R.;H. Kobayshi
  4. Microbiol. Rev. v.54 Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates Anderson, A. L.;E. A. Dawes
  5. Anal. Biochem. v.72 A rapid and sensitive method for the quantitaion of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M. M.
  6. J. Bacteriol. v.41 The utilization of certain hydrocarbons by microorganisms Bushnell, L. D.;H. F. Haas
  7. J. Microbiol. Biotechnol. v.8 Hydrolytic dechlorination of 4-chlorobenxzoate specified by fcbABC of Pseudomonas sp. DJ-12 Chae, J.-C.;K.-J. Ahn;C.-K. Kim
  8. Proc. Natl. Acad. Sci. USA v.92 Cloning of an organic solvent-resistance gene in Escherichia coli: The unexpected role of alkylhydroperoxide reductase Ferrante, A. A.;J. Augliera;K. Lewis;A. M. Klibanov
  9. J. Am. Chem. Soc. v.86 ρ-σ-π analysis and chemical structure Hansch, C.;T. Fujita
  10. Nature v.338 A Pseudomonas thrives in high concentration of toluene Inoue, A.;K. Horikoshi
  11. J. Ferment. Bioeng. v.71 Estimation of solvent-tolerance of bacteria by the solvent parameter log P. Inoue, A.;K. Horikoshi
  12. J. Microbiol. Biotechnol. v.8 Isolation of an aromatic polyhydroxyalkanoates-degrading bacterium Ju, H.-S.;J. Kim;H. Kim
  13. Oil Chem. Pollut. v.4 The effect of biodegradation on crude oil bulk and molecular composition Kennicutt, M. C.
  14. J. Biochem. v.43 Studies on the oxidation mechanism of methyl group Kitagawa, M.
  15. Biosurfactants; Production, Properties, Application Kosaric, N.
  16. Chem. Rev. v.93 Calculating log P from structures Leo, A. J.
  17. J. Bacteriol. v.178 Isolatioon and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1 Maeng, J.-H.;Y. Sakai;Y. Tani;N. Nato
  18. J. Ferment. Bioeng. v.76 A benzene tolerant bacterium utilizing sulfur compounds isolated from deep sea Moriya, K.;K. Horikoshi
  19. J. Ferment. Bioeng. v.76 Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation Moriya, K.;K. Horikoshi
  20. Biosci. Biotechnol. Biochem. v.63 Isolation and properties of an extracellular β-glucosidase from a filamentous fungus, Cladosporium resinae, isolated from kerosene Oh, K.-B.;H. Hamada;M. Saito;H.-J. Lee;H. Matsuoka
  21. Environ. Pollut. v.59 Hydrocarbon infiltration and biodegradation in a land-farming experiment Oudot, J.;A. Ambles;S. Bourgeouis;C. Gatellier;N. Sebyera
  22. Trans. Brit. Mycol. Soc. v.53 The natural occurrence of Cladosporium resinae Parbery, D. G.
  23. Mater. Org. v.3 Biological problems in jet aviation fuel and the biology of Amorphotheca resinae Parbery, D. G.
  24. Aust. J. Bot. v.17 Amorphotheca resinae gen. nov., sp. nov.: The perfect state of Cladosporium resinae Parbery, D. G.
  25. J. Microbiol. Biotechnol. v.8 Biodegradation of phenol by a trichloroethylene-cometabolizing Park, G.-T.;H.-J. Son;J.-G. Kim;S.-J. Lee
  26. Norcardia. Appl. Microbiol. v.15 Microbial hydrocarbon co-oxidation, Ⅰ. Oxidation of mono and dicyclic hydrocarbons by soil isolaes of the genus Norcardia Raymond, R. L.;V. W. Jamison;J. O. Hudson
  27. J. Microbiol. Biotechnol. v.8 Biodegradation of trichloroethylene by phenol-degrading Pseudomonas putida Shin, H.-J.;M.-Y. Lee;J.-W. Yang
  28. J. Microbiol. Biotechnol. v.9 Effects of various parameters on biodegradation of degradable polymers in soil Shin, P.-K.;E.-J. Jung
  29. Can. J. Microbiol. v.20 Effects of n-alkanes on Cladosporium resinae Teh, J. S.;K. H. Lee
  30. Environ. Sci. Technol. v.20 Behavior of aliphatic hydrocarbons in coastal seawater: Mesocosm experiments with [$^14C$]octadecane and [$^14C$]decane Wakeham, S. G.;E. A. Canuel;P. H. Doering
  31. J. Bacteriol. v.124 Metabolism of toluene and xylene by Pseudomonas putida (arvilla) mt-2: Evidence for a new fuction of the Tol plasmid Worsey, M. J.;P. A. Williams