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Some Distribution Results on Random Walk
with Unspecified Terminus

1

Jagdish Saran' and Sarita Bansal®

ABSTRACT

This paper deals with the distributions of certain characteristics related
to a symmetric random walk of n steps ending at an unspecified position,
thus generalizing and extending the earlier work.
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Upcrossing; Run of returns; Run of positive returns; Run of crossings; Run of
upcrossings; Generating function; Unconditional ballot problem.

1. INTRODUCTION

Consider a symmetric random walk of n steps, n being odd or even, ending at
an unspecified position. This random walk, for even n, was considered by Chung
and Feller(1949), Feller (1957),Csdki and Vincze(1963) and Jain(1966). Again,
Aneja(1975, Ch. V), Csdki (1961), Engelberg(1964), Sen(1964,1969), Kaul(1982,
Ch. V), Saran and Sen(1981) and Kaul and Sen(1983) treated independently
the symmetric random walk of n steps ending at an unspecified position. In this
paper we consider the above mentioned symmetric random walk of n steps, n
being odd or even, ending at an unspecified position and obtain the distributions
of certain characteristics of this random walk, thus generalizing and extending
the earlier work.

Consider a sequence of n independent random variables {W;} having a com-

mon distribution P(W; = +1) = P(W; = —1) = J which generates the sequence

of partial sums {S;} where Sy = 0,5; = Zgzl W; in such a way that the final
sum Sy, of all the n variate values is unknown. Obviously there are 2" possible

arrays of (+1)'s and (—1)'s each with probability 27". The sequence of random
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variables {S;} defines a random walk on a one - dimensional lattice which can
be represented graphically by a polygonal line whose j** side has slope +1 and
whose ji* vertex has the ordinate S;. It may be noted that i and S are always
in parity.

It may be pointed out that the results obtained in this paper also have an
interpretation in terms of the “unconditional” ballot problem considered by En-
gelberg(1964) and saran and Sen(1981) formulated below: Suppose that in a
ballot with two candidates A and B, the total number of votes equals m and
that all 2™ possible arrangements of counting are equally probable (here the num-
ber of votes scored by individual candidates are not known). In this context a
random walk path ending at an unspecified position can be interpreted as a vote

sequence.
For convenience of presentation, we introduce the following symbols:
I. THT;7) = apositive (negative) trail
= the segment of the path {S;} starting from the x-axis,
say at the 7** step, and ending at an unspecified positi-
on after the n-th step such that S; = 0,.5; > 0(S; < 0),
j=i+1,...,n
II. TH(T~) = a positive (negative) tail

= the segment of the path {5;}starting from the x-axis at
the i step and ending at an unspecified position after
the n*® step without touching the x-axis in between su-
ch that S; =0and S; > 0(S; <0),j =i+ 1,...,n. (It
is obvious that a TT(T~) is a T} (T7) but the converse
is not true).
III. TE(T) = aTH(T,) of even length.

IV. TH(Ty) =a THT;) of odd length.

V. TS(T;)=aTH(T") of even length.
VI. T (Ty) =aTH(T") of odd length.
VII. Np(u) = the number of sojourns at height w.

= the number of returns at height u.

= the number of indices ¢ for which 5; = u,u =0,1,2,....
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VIII. N}F(u),N;(u) = the number of positive and negative sojourns
or returns at height u, respectively. Let 0 <%
< iz < ... be the indices for which S; = u. Th-
en the sojourn from i1 to ix is called positive
or negative according as S; > u or S; < u for
i1 < J < ig.

IX. Nj(u) = the number of crossings of height w.

= the number of indices ¢ for which S; = u and (u — S;-1)

(u—Si+1) <0,u=0,1,2,....

X. NF*(u) = the number of upcrossings of height w.
= the number of indices ¢ for which S; =u+1 and 5;_
=u,u=0,1,2,...
XI. Ry(u) = the number of runs of returns of height u of type VII

whose number is Ny (u).
= the number of sequences of (consecutive) returns of he-
ight u with indices increasing by 2, i.e., the sequence
(ks %ka1,- - -, %) Of return indices of height u will be sa-
id to form a run of returns at height w if
(i) iy — -1 = 2, j=k+1,k+2,...,1
(ii) ix > ik—1 + 2, and
(iil) 441 > 4 + 2. ‘
XII. R}(u) = the number of runs of positive returns of height u of type
VIII whose number is N;f (u).
the definition X I with ‘positive return’ in place of ‘return’.
XIII. R!(u) = the number of runs of crossings of height u of type IX
whose number is N} (u).
= the definition X I with ‘crossing’ in place of ‘return’.
XIV. Rf*(u) = the number of runs of upcrossings of height u of type X
whose number is N} (u). :
— the definition XI with ‘upcrossing’ in place of ‘return’.

A ‘wave’ (V) is defined as the segment between two consecutive returns to
the origin or x-axis; the segment between the origin and the first return point
is also regarded as a wave. A wave V lying above(below) the x-axis is called a
positive (negative) wave and is denoted by the symbol V¥ (V™) . A ‘Section’ (W)
is defined as the path segment between two consecutive crossings of the x-axis. A
section W lying above (below) the x — axis is called a positive (negative) section
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and is denoted by the symbol W+ (W ™).

2. SOME RELEVANT GENERATING FUNCTIONS (GF’s)

The following expansion due to Dwass(1967, Appendix (16)) will be found
useful in determining the GF’s considered in this section:

[%{1—(1—4’5%}]%1‘_ i (2”"”1)15". (2.1)

(1_415)% _n:k—l n—k+1

Some of the results we quote below appear in Feller (1968), Kaul(1982, Ch.
V) and Kaul and Sen(1983) and the rest are easily derivable from elementary
considerations. The following list covers what is needed in the sequel.

(i) Let G(T;}) and G(T, ) denote, respectively, the GF of a positive tail of even
length (say, 2k) and that of a negative tail of even length(say, 2k). Then

s/2¢(s)(1 — ¢(s)), k>0

G(Tj) =G(T,) = { P(s)/2(1 — ¢(s)), k>1,

where ¢(s) =1 — (1 — s2)1/2,
Proof: The number of paths of 2k(k > 0) steps relevant to a positive tail T, of
even length considered above is the same as the number of paths with origin

shifted to (1,1) such that ; > 0,5 > 1 which by Sen(1969) is < py )

Hence

o0
2k — 1
G(TS) = Z( . )t%
k=0
= - 2k
k=0
o0

I () e
D (e
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oA/ by (2.1)

$(s)(1 — (s))’

82

2¢(s)(1 — ¢(s))

Similary when k > 1, the GF of the positive tail T," of even length is given

by
G(TS) = fj(”“‘l) %
_ i(%l) 2

k=1
2
= —1 (from above)

20(5)(1 — 9(5))
#(s)
21— 9(s)

The result that G(T,7) = G(T),") follows from symmetry.

(i) the GF’s G(T;") and G(T, ) of positive and negative tails of odd length
0 0 g

2k + 1(k > 0) are
s

2(1 — ¢(s))
(iii) the GF's G(T}t) and G(T},) of positive and negative trails of even length 2k
are

G(Ty) =G(Ty) =

1
aeey k20
G(T,) = G(Ty,) =

o(s)
ey k2L

(iv) the GF’s G(T:) and G(T}) of positive and negative trails of odd length
2k + 1(k > 0) are
(s)
s(1 —¢(s))
| #(s) |

(v) the GF of the time to reach height k for the first time is {—s—} Jk=1,2,... .
(vi) the GF of a wave V (i.e., VT or V7~ ) is ¢(s).

. o . _ g2
(vii) the GF of a positive (negative) wave V1(V ™) of length 2 steps is %

G(Typ) = G(Ty) =
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" . - . ¢2(s)
(viii) the GF of a positive (negative) wave V1 (V™) of length > 2 steps is —4(—5.

(ix) The GF of a section W (i.e., W or W~) is %ﬂ

(x) the GF of a positive (negative) section W (W ™) of length 2 steps is %.

(x 1) The GF of a pos1t1ve(negat1ve) section W (W ™) of length > 2 steps is
$2(s)

T2 4 :

3. DISTRIBUTIONS OF N,,(a) AND R,,(a)

Theorem 3.1. When m and a(> 0) are in parity, we have

e r—2 m—2r+3
P(Np(a) =7, Rpla) =k) =2 1(k—1)<7—”—2‘—“—k—r+2> (3.1)

and

P(Np(a) =r) = 2—m1 ( m :ni;rl > . (3.2)

2

Proof: We shall first prove (3.1) and (3.2) for the case when m and a are both
odd. Let m = 2n+ 1. Consider a random walk {S;; So = 0,5; = 2{21 Wi, 5 > 1}
denoted by OMDE from O(0,0) to E(2n+1,2¢+1),c = 0,+1,£2,...,+£n, where
M and D are the first and the last return points of height a , respectively. Then
the path {S;} is divided into three segments, viz. from O to M, M to D and
D to E. The first segment from O to M is a first passage to height a with GF
(¢—(:Z)“ , by (v) of Section 2. The last segment from D to E involves 2t(t > 0)
steps if the ordinate of the point E, viz. 2c+1, is > 0 and is such that it does
not return to the horizontal MD or it involves 2¢(¢ > 1) steps if the ordinate of
the point E is < 0 and is such that it does not return to the horizontal MD.
Thus the segment DE is a positive tail of even length 2¢(¢ > 0) or negative tail of
even length 2t(t > 1) with GF’s 2¢(3)(512_¢(S)) and 2(141(;%5)), respectively, by (i) of
Section 2. The path segment MD consists of r+1 waves. The waves comprising
a run of returns are of length 2 each and a wave between any two consecutive
runs of returns will be of length > 2. But the wave in the beginning of the path
segment MD may be of any length. Thus the path segment MD consists of the

following:

(a) one wave in the beginning with GF ¢(s),

(b) (r—k—1) waves (V) each of length 2 and each with GF %, by (vii) of Section
2’

(c) (k — 1) waves (V) each of length > 2 and each with GF ﬂ?s—), by (viii) of
Section 2.
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The (r — k — 1) waves(V) each of length 2 are to be combined with (k — 1)
waves (V) each of length > 2, so as to form k runs of total » — 1 returns which is

. r—k—-14+k-1 r—2 ‘

bl = . i
possible in k-1 ) ( k1 ) ways. Therefore, the generating
function(GF) of the path entailing r returns of height a and k& runs of returns of
height a is given by

G(s; Nont1(a) =1, Ront1(a) = k) = > P(Napy1(a) = r, Rony1(a) = k)s** !

_ ( l::? )2r_1 (§>a+2k—2r+2 <%ﬂ>a+2k—1 1—1% | (33)

Summation of (3.3) over k from 1 to 7 — 1 yields
a
r—1

G(s; Nopt1(a) = 1) = <¢(S) ¢(s)

s
The coefficients of s***! in the expansions of (3.3) and (3.4) obtained with the
help of (2.1) lead to (3.1) and (3.2), respectively, for the case when m and a are
both odd. Likewise (3.1) and (3.2) can be established when both m and a are
even.

L (3.4)

Theorem 3.2. When m and a(> 0) are not in parity, we have
_ r—2 - om—2r+2
P(Nm(a‘):rva(a)zk):2r " < E—1 ) ( m~2a+3__k__7, ) (35)

and

P(Np(a) =r) =2/~ ( e ) . (3.6)
2

Proof: Let us consider the case when m is even and a is odd. Let m = 2n and
let OMDE be a random walk {S;} as envisaged on the left hand side of (3.5),
where M and D denote, respectively, the first and the last return points of height
a . We observe that the GF’s of the segments OM and MD are of the same form
as those of the corresponding segments in Theorem 3.1. But the segment DE
of the path is either a Ty or a T; each with GF 57—-—, by (ii) of Section 2.

(1-6(s))°
Arguing in a similar manner as in Theorem 3.1, it can be shown that

G(s; Nop(a) = r, Ron(a) = k)

_ ( ]::? >2T <§>a—21‘+21?+1 <%s)->a+2k—1 ITI@ o
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Summing (3.7) over k from 1 to r — 1 gives

G(s; Non(a) = 1) = 27 (%)H (@)aw_1 Ii‘l@' (3.8)

The coefficients of s2® in the expansions of (3.7) and (3.8) yield, respectively,
(3.5) and (3.6) for the case when m is even and a is odd. The other case when
m is odd and a is even follows similarly.

In a similar manner, the following result can easily be established.

Theorem 3.3. For a =10,

P(N(0) = r, Ry (0) = k)

—1 _9
gr-m+1 [ 7 MTE ) for moodd
k-1 mTH—k—r
(3.9)

r—1 m—2r+1
2r—m , for m even
k—1 F-r—k+1

and

m—1
2

m -7
2r—m ( > , for m even.
m
2

It may be noted that the results (3.2), (3.6) and (3.10) are in agreement,
respectively, with the results (1), (8) and (15) of Saran and Sen(1981). They
also verify, respectively, the results [(17),(60)], [(32), (46)] and [(32),(60)] of Kaul
(1982, Ch. V).

The distributions of the vectors (N}, (a), R%, (a)), (N,1*(a), R}t*(a)) and (N} (a),
R} (a)) can easily be obtained by using similar arguments as used above and are

ro1
gr—m+l < mor ) , for m odd
(3.10)

quoted in the next section.

4. OTHER DISTRIBUTION RESULTS

(i) When m and a(> 0) are in parity, we have

P(Ny(a) =1, Ry, (a) = k) = P(N3"(a) = r, Ry’ (a) = k)
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k— .
:2—m+1<’r );( )( 1)k11<m+n?;a_f:+2>’ (4.1)

P(Ny(a) =7) = P(NF*(a) = 7) =27 ( . ) ; (4.2)

m+ta
5+

1=0

m+1—2r+2 n m+17—2r+1
. mé—a _7,_+_1 m2—a —
and

m 7'—1 m+1-— m-r
P(Nj(a)=7)=2 Z( >KWT“++z‘+T1)+<mT“+i+1>
(4.4)

It may be noted that the first part of (4.2) verifies results (6) and (27) of Kaul
and Sen(1983).

k—1
p(N;(a):r,R:n(a):k):2_m< /::1 )Z ( kz_-l )

(4.3)

3

(ii) When m and a(> 0) are not in parity, we have

P(N;,(a) =r, Ry, (a) = k) = P(N3*(a) =, R (a) = k)

k .
r—1\x=( k-1 m+2i—2r +3 B
- B - k—i-1 -
=2 m<k_1> .—0< ; )(—1) ( m_gﬂ_r ), (4.5)

P(Nj(a) =7) = P(N3*(a) =7)=2"" < m IZ«: %H“ > ’ (4.6)
2
k: .
pov =i =0 == (17} )3 (1) (30577 ).
- (.7)
and
r—1
e ()35
i=0
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It may be noted that the first part of (4.6) is in agreement with results (14)
and (23) of Kaul and Sen(1983).

(iii)) When a =0

P(Ny(0) =r, Ry, (0) = k) =

( .
o—m r—1 ZI'C—_l k—1 (—1)k-i-1 m+2i—2r+3
k-1 )70\ ™y
f dd
) | or m o (4.9)
9—m+1 r—1 k-1 k-1 (_l)k—i—l m-+2i—2r+2
k=1 )T wor )
L for m even
and
2-m+l " , for m odd
oy
P(Ny,(0) =) = (4.10)
o [ M1
2t o , for m even
7t

For even mn the second part of (4.1), the second part of (4.2), (4.3) and (4.4),
and for odd m the second part of (4.5), the second part of (4.6), (4.7) and (4.8)
hold good for a = 0 too.

It may be noted that the result (4.10) verifies the results (18) and (31) of
Kaul and Sen(1983).
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