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Tests for Panel Regression Model with Unbalanced
Datal

Seuck Heun Song' and Byoung Cheol Jung?

ABSTRACT

This paper consider the testing problem of variance component for the
unbalanced two-way error component model. We provide a conditional LM
test statistic for testing zero individual(time) effects assuming that the other
time-specific(individual) effects are present. This test is extension of Baltagi,
Chang and Li (1998, 1992). Monte Carlo experiments are conducted to study
the performance of this LM test.
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1. INTRODUCTION

Breusch and Pagan (1980) and Godfrey (1989) demonstrated the wide ap-
plicability of Lagrange Multiplier(LM) test to various model specifications in
econometrics. The LM test is an attractive competitor to the LR and the Wald
tests because it requires only the estimation of the model under the null hy-
pothesis and in most cases, the LM test computation requires only ordinary least
o squares residuals. In the context of the error component regression model, the LM
tests for the existence of the random individual and time effects were derived by
Breusch and Pagan (1980). Later Honda (1985), Moulton and Randolph (1989)
and Baltagi, Chang and Li (1992)‘ extend the work of them to a one-sided tests.
For an extensive Monte Carlo study of several tests proposed for the balanced
error component model, see Baltagi, Chang and Li (1992). But, the most of
econometrics studies focus on the complete or balanced panels, yet the empiri-
cal applications face missing observations or incomplete panels. Exceptions are
Baltagi and Chang (1994), and Baltagi, Chang and Li (1998).

This paper reconsiders the testing problem of unbalanced two-way error com-
ponent regression models. In this model, Baltagi, Chang and Li (1998) study the
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joint test for the individual effects and time effects in the unbalanced two-way er-
ror component regression models. But, one weakness of these joint tests is that if
the null hypothesis is rejected, one can not infer without further testing whether
the individual effect, the time effect, or all two effects are absent. Also, this joint
test will not be optimal if only one of the two effect does not exist. This is the
problem of overtesting discussed in Bera and Jarque (1982). To overcome this
problem, we propose the conditional test which tests the presence of individual
(time) effects assuming that time (individual) effects are present. This condi-
tional LM test extends the results of Baltagi, Chang and Li (1992, 1998) to the
two-way error components model. The outline of this paper is follows : Section
2 describes the model and derives the various tests. The proofs are relegated to
the Appendices. Section 3 compares the performance of these tests using Monte
Carlo experiments. Section 4 gives a summary and conclusion.

2. THE MODEL AND TEST STATISTICS

We consider the following panel data regression model
yitzx'lit/ﬂ'*"uiht:1a27"'?T7 i:]-a"'aNta (1)

where y;; denotes the observation on the dependent variable for the th individ-
ual at the tth time period, z;; denotes the it-th observation on k nonstochastic
regressors and J is a k X 1 vector of regression coeflicients including the inter-
cept. The panel data is incomplete and we observe only N; individuals in period
t (2 < Ny < N), where N is a number of individuals. The disturbances of (1) are
assumed to follow the two-way error component model, see Hsiao (1986),

Uit = i + A + Vig, (2)

with p; ~ IIN(0,02), Ay ~ IIN(0,0%) and v ~ IIN(0,02). Following Wans-
beek and Kapteyn (1989), we order the observations such that all the individuals
observed in the first period are stacked on top of those observed in the second
period, and so on. In this case, the slower index is ¢ and the faster index is ¢. In
vector form, (2) can be written as

u = A+ DA+ v, 3)

where Ay = (D}, D},--- D), Ay = diag(Dsin) = diag(in,), and D, is the
(Ny x N) matrix obtained from the identity matrix Iy by omitting the rows
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corresponding to individuals not observed in year ¢. For complete panels, Ay =
(iT ® IN) and Az = (IT & [,N). ul = (;1,1,--- ,uN), M= ()\1, vt ,)\T) and l:Nt is
a vector of ones of dimension N;. The hypotheses under consideration are the
following :
a) H : af; = 0 (assuming % = 0), and the one-sided alternative is H{ : o2 > 0
(assuming o3 = 0).

b) H : 0% = 0 (assuming 02 = 0), and the one-sided alternative is HY:02 >0
(assuming az =0).
c) H§ : az = 0 (assuming 0% > 0), and the one-sided alternative is Hf : 2 > 0
(assuming 0% > 0).

d) H¢ : 02 = 0 (assuming az > 0), and the one-sided alternative is Hf : 02 > 0
(assuming o > 0).

2.1. LM TESTS
a) For Testing H¢ and H}

We first derive the LM test for the presence of individual (time) effects as-.
suming that the time (individual) effects are absent. In order to construct the
LM-type statistics, we need the score vector and information matrix under the
null hypothesis. Let D be the score vector and J be information matrix evalu-
ated at the restricted MLE, using the results of Baltagi and Li (1990), the partial
derivatives and information matrix are given by,

0

0
~ / ~
~ n u'ArAlu n
= -~ —  ~~ ]- e —
D = (0L/06)ly_5 = 33 o =5z | 4 (4)
’D:’AQA/Q’D: 1 B
N
and
n n n
~ 1 N o 5
J = 55_3 n YiaT; n ' . (5)
n n E;‘le N?
where 6 = (ag,oz,ai)’ and % is a vector of OLS residuals. T; is the number of

time periods observed in individual 7 and N; is the number of individuals observed
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inyear tandn=>» N;=> T,

Note that if there are no time effects, i.e., assuming that o—f\ = 0, and one is
Qvnly testing H : crﬁ =0, versus HY : aﬁ > 0 then we ignorg the third element of
D in (4) and the corresponding third row and column of J in (5). In this case,
the LM statistic becomes

2
n AQ

2y (T - 1)

BP, (6)
Under H¢, the LM statistic given by (6) is asymptotically distributed as x3.
Since, 0% cannot be negative, the one-sided LM test is

n2
e = \/2 ST D) "

which is asymptotically distributed as N(0,1) under H{.

Similarly, if 02 = 0 and one is oan testing Hg : 0,2\ = 0, versus H 1b : 0/2\ >0
then we ignore the second element of D in (4) and the corresponding second row
and column of J in (5). In this case, the LM statistic becomes

’I’L2 2

BP, = B, (8)
250 Ny(N; — 1)

which is asymptotically distributed as x?. Again, ai cannot be negative. Hence,
the one-sided LM test statistic is given by

n?
b = \/2 e NN = 1) b ©)

This is asymptotically distributed as N(0,1) under HY. For a similar tests in
balanced two-way model, see Baltagi, Chang and Li (1992).

Moulton and Randolph (1989) showed that the asymptotic N(0,1) approxi-
mation for testing the random individual effects in the one-way error component

model can be poor even in large samples. This occurs when the number of re-
gressors is large or the intra-class correlation of the regressors is high. They
suggested an alternative Standardized LM (SLM) test which centers and scales
the one-sided LM test so that its mean and variance are zero and one, respec-
tively. The SLM statistics for testing H{ : aﬁ = 0, and Hg : J‘}\ = 0 are given
by

LM, - E(LM;) d.— E(d,)
B var(LM,)  +/var(d,)

SLM, (10)
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for r = a,b,where d, = @'U;u/u't and U, = A;A] and Uy = AyA). Using the
results on moments of quadratic forms in regression residuals (see, for example,
Evans and King (1985)), we get

E(d;) = tr(U.(I, — Px))/m, (11)
where m =n — k and Px = X(X'X)™ !X’ and |
var(d,) = 2{trU,(I, — Px))*m — [tr(U,(I, — Px)]*}/m2(m + 2). (12)

Under the respective null hypothésis, SLM, and SLM, are asymptotically dis-
tributed as N (0,1).

b) For Testing HS and H{

When one uses LM, to test Hf : aﬁ = 0, i.e., no individual effects, one
implicitly assumes that the time effects do not exist, i.e., that a?\ = 0. But, when
the time effects exist, i.e., a}\ > 0, LM, may lead to incorrect decisions. To
overcome this problem, we propose the following LM test which tests the presenée
of individual effects assuming that the time effects are present. The corresponding
hypothesis is Hf : 02 = 0 (assuming 0% > 0) vs Hf. The detail derivations of test
statistic are given in Appendix. From the appendix, the conditional test statistic
for testing Hy : az = 0 (assuming ai > 0) is given by

] Tk 2 |
L, = [ D@, (13)

where det denotes the determinants, J#* is the cofactor of (2,2)th element of J.

D(Eﬁ) and J are the first derivatives and information matrix evaluated at the

null hypothesis (O’ﬁ = 0), and that is given by

T
oL lin—-T 1 1 ~ ~
e =DED) = =5 [P Y |+ {0 AN e (e
902 = P0w = =33 ; Noi+ozl "2 151 (14)
and
[ 1 Ne—1 =T T 1 N, 7
Cwmmr to N Tt lamay L
=~ 1 _T T 1 7 T N,
J=3 St L1 (vt eny S Y= e |
Ny T Ny T N2
| Z (NiG5+52)2 ‘ Zt:l (N:53+02)2 Et:l (Nt8§+3,2,)2 i

(15)



516 Seuck Heun Song and Byoung Cheol Jung

T T ~

-~ atCt ata,
where J,,,, = ZA_4_2ZZN{0\; ZZ > Cts,at—l/a —1/(N:52 +
= s=1 t=1 =1t=1
72), and Cy, is the number of observations that mmultaneously observed at time

t and s. Under the null hypothesis, the conditional LM test given in (13) is
asymptotically distributed as N(0,1). This extends the work of Baltagi, Chang
and Li (1992) to the unbalanced two-way error component model.

Similarly, one can derive the conditional LM test for H(‘)i : 0/2\ = ( assuming
that the individual effects are present. In this case, we rearrange the model by
individual first and using the same derivation of LM,, the LMy is given by (this
derivation is simple but tedious and it is available upon request from the author)

T
det(J)

where J* is the cofactor of (3,3)th element of J. D(5%) and J are the first
derivatives and information matrix evaluated at the null hypothesis (0% = 0),

LM, = D(3%), (16)

and that is given by

N
lfn—N 1 1 (~ ~
D(3}) = —= | —=— |+ ST QT AN 1
(%) 2[ 52 +;Ti53+0u]+2u{ 285 }u (17)
and
T n—N N 1 h
| Yt Laememy 5t i gy
> 1 N T? N T
J=3 Y amiimy il TR L= @EAn? |
—-N N N T; T
| AL mmmy i G I ]
(18)
~ bH,m N X b -
where Jy, = Z 222 +ZZ H,m, b = 1/52-1/(Ti52+52),
t=1 V k=11i=1 V k=1 i=1

and H;; is the number of observatlons that sunultaneously observed at time k
and 1. LM, is also distributed as N(0,1) under H¢.

2.2. LR TESTS

Following Goureroux, Holly and Monfort (1982), the one-sided LR tests have
the following form :

B l(res)
LE= —2l091(um“es) ’

(19)
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where [(res) denotes the maximum likelihood value of restricted model(under
the null) and [(unres) denotes the maximum likelihood value of unrestricted
model(under the alternative). These tests require ML estimators of the one-
way and two-way models and are more computationally expensive than their
LM counterparts. For example, we consider the testiﬁg Hj - az = 0 (assuming
0/2\ > 0), then the LR test requires the ML estimator of one-way model and two-
way model while the LM test only requires the ML estimator of one-way model.
Under the null hypothesis considered, the LR statistic have the same asymptotic
distributions as their counterparts, see Goureroux, Holly and Monfort (1982),
more specifically, for all hypothesis Hg, Hg, H¢ and HE, LR ~ 3x*(0) + %XQ(l),
where x?(0) equals zero with probability one. | ‘

3. MONTE CARLO RESULTS

Monte Carlo studies were carried out to compare the size and power properties
in various test statistics described in above section.

3.1. Design of the Monte Carlo Study

We consider the following simple regression equation :
yit:a+$itﬂ+uit, t:1a27"'7T7 ’l:=1,"',Nt, (20)

with wu;; defined by (2). The exogeneous variable z;; was generated by a similar-
method to that of Nerlove (1971). In fact, z; = 0.3t + 0.8z; 1 -+ w;;, Wwhere w;; .
is. uniformly distributed on the interval [—0.5,0.5]. The initial values z;y were
chosen as (100 + 250w;g). Throughout the experiment o = 5 and 8 = 2. For the
disturbances u;;, we let p; ~ IIN(O,UIQL), At ~ IIN(0,0%) and v; ~ IIN(0,0%).
We fix 02 = 02 + 03 + 02 = 20 and let 71 = 0;/0® and 71 = 02 /o? vary over the
set (0,0.05,0.1,0.2,0.4,0.6,0.8) such that (1 —~; —72) is always positive. We fix
N=30 and follow the suggestion given by Swallow and Searle (1978) of selecting
T-patterns which intuitively seem to range from slightly to badly unbalanced. Let
5(15) denote the T-pattern with 15 individuals each observed over five periods,
then the following unbalanced T-patterns are used: P, = 5(15),9(15); P» =
5(10),7(10),9(10); P3 = 3(6),5(6),7(6),9(6),11(6); Py = 3(9),5(6),9(6),11(9);‘
Ps = 3(24),23(6); Ps = 2(15),12(15). Obviously, pattern Ps is more unbalanced
than P;. For all patterns considered, the sample size is fixed at 210.

A measure of unbalancedness as given by Ahrens and Pincus (1981) is defined



518 Seuck Heun Song and Byoung Cheol Jung

as,

N N
T:N/TZ(I/Ti), where T:ZTi/N and 0 <7 < 1. (21)
i=1 i=1
Note that r takes the value of one when the pattern is balanced, but it takes
smaller values as the pattern gets more severely unbalanced. Denoting by r; as
the measure of unbalancedness for pattern P; and r as the vector of r;’s, then r =
(0.918,0.841,0.813, 0.754,0.519,0.490). Note that the degree of unbalancedness
increases as the subscript of P gets large.
For each experiment, 1000 replications are performed and in each experiment
we calculated the rejection numbers of the following test statistics : For H§
and Hg, the two-sided BFP, and BPF,; test, the one-sided LM, and LM, test, its
standardized version (SLM, and SLMj,) test and corresponding LR, and LR,
test. For HS and HY, the conditional LM tests (LM, and LM,), and the LR
tests(LR, and LRy).

3.2. Results

Table 1 gives the number of rejections for the various test for testing H§ :
Uﬁ = 0 (assuming 0% = 0) and Hf : az = 0 (assuming 0% > 0) for all considered
patterns. Similar tables for testing H{ : ai = 0 (assuming a;‘l = 0) and Hg :
2 > 0) are obtained, but they are not produced here to
save space(These results are available upon request from the authors). We first
consider a results for H§ : 02 = 0 (assuming 03 = 0). BF,, LM,, SLM, and
LR, give the result of testing H{ : ai = 0 (assuming o% = 0) for all considered
patterns. When H§ is true which is in the top block of Table 1, all the tests
perform badly since they ignore the time effect, i.e, a?\ > 0. In fact, the two-
sided BP test badly overrejects the null hypothesis H§, while the one-sided LM,,
SLM, and the LR, test badly underestimate the nominal size. This is coincide
with the result of balanced two-way error component model given by Baltagi,
Chang and Li (1992). They explain that the poor performance of two-sided BP

test is caused by the large negative value of A. Also, they show that when the

0 = 0 (assuming o

true model has only time-specific effects and one is testing aﬁ = 0O(ignoring the
fact that ai), then plimA may tend to oo as both N and T tend to oo. Our
results for the unbalanced two-way error component model confirm the results
of balanced two-way error component model. When ai is large(y1 > 0.2), all
the tests perform well in rejecting the null hypothesis, but the power is slightly
decreases as -y2 increases.



Tests for Panel Regression Model with Unbalanced Data 519

Next, we consider the results of conditional tests. LM, and LR, give the
result of testing H§ : o7, = 0 (assuming o3 > 0) for all considered patterns. From
the Table 1, the estimated size of the LM, test is not significantly different from
the nominal size while the LR, test slightly underestimate the nominal size for
all patterns. For 1000 replications, counts between 37 and 63 are not significantly
different from 50 at the 0.05 level. The result of underestimation of the LR test
is in sharp contrast to the Table 3 of Baltagi, Chang and Li (1992) where the
estimated size of the LR test for the balanced two-way error component model
is not significantly different from the nominal size. The power of all the tests
increases as y; increases. In fact, y; > 0.2, all the tests have high power rejecting
the null in 95 % to 97 % of the cases for all patterns.

Also, even if v = 0, ie., the true model is one-way, all the tests in H§
perform well compared with the corresponding tests employed in H§. Hence,
overspecifying the model, i.e., assuming the model is two-way (0% > 0) when
it is one-way(o? = 0), does not hurt the power of tests. This confirms similar
results by Baltagi, Chang and Li (1992) for the balanced two-way error component
model.

The result in this subsection emphasis that one should not ignore the pos-
sibility of af\ when testing ai = 0. In other words, if there is any sign of time
effect(i.e., % > 0) when testing ai = 0, one would expect that the test statistic
based on H{ to be preferable to one test statistic based on H§. In fact, our results
suggest that it may be better to overspecify the model rather than underspec1fy
it in testing the variance components

4. CONCLUSION

This paper deals with the testing problem of one variance component for the
unbalanced two-way error component model. We derive the one-sided LM and
standardized LM test statistics for the assumption of the other variance compo-
nent is zero, and conditional LM test statistics for the other effects are given.
Using the Monte Carlo experiments, we obtain the following conclusions: (1) the
one directional LM tests and LR tests that assume the other variance component
is zero have low power when this other variance component is large for H§ and
H}. (2) the computationally more demanding LR tests slightly underestimate the
nominal size and have the low powers relative to conditional LM test statistics
for H§ and Ho
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Table 1. Rejection number of tests for testing Hy : aﬁ =0

P1 P2

Y1 v. | BP, LM, SLM, LR, LM, LR.|BP, LM, SLM, LR, LM, LR

0.00 0.00 | 49 36 49 34 36 36 44 36 56 30 39 32
0.00 0.05 | 36 22 42 14 34 26 44 26 40 21 39 33
0.00 0.10 | 46 17 26 12 33 33 42 13 22 13 37 35

0.00 0.20 | 72 24 31 15 63 41 60 18 27 9 54 29
0.00 0.40 | 176 1 5 6 47 46 191 1 2 3 42 42
0.00 0.60 | 375 1 2 4 41 44 388 1 1 2 46 39
0.00 0.80 | 676 0 0 3 51 47 674 1 1 3 49 40

0.05 0.00 | 212 285 358 245 294 253 | 193 264 344 224 272 234
0.05 0.05 | 192 247 301 218 312 259 | 183 252 315 217 304 266
0.06 0.10 | 165 221 274 192 328 275 | 182 240 302 210 342 306
0.05 0.20 | 131 176 223 149 404 349 | 122 167 215 143 375 330
0.06 040 | 117 124 152 115 550 498 | 113 126 162 120 543 505
0.05 0.60 | 145 105 133 108 783 748 | 147 96 122 95 783 744
0.05 0.80 | 232 73 96 84 989 985 | 231 67 92 76 989 988

0.10 0.00 | 533 615 670 594 622 600 | B33 619 674 607 627 613
0.10 0.05 | 517 604 684 563 663 618 | 496 591 664 8562 669 623
0.10 0.10 | 484 579 638 580 708 689 | 494 584 650 545 695 678
0.10 0.20 | 442 544 597 493 773 7b4 | 448 527 596 491 753 754
0.10 0.40 | 346 412 451 397 906 878 | 3563 417 480 390 909 897
0.10 0.60 | 307 365 417 373 993 990 | 300 357 418 387 992 985
0.10 0.80 | 313 316 345 322 1000 1000 | 326 324 362 331 1000 1000

0.20 0.00 | 917 951 965 933 953 937 | 930 953 965 948 955 948
0.20 0.05 | 921 952 967 940 968 960 | 926 940 961 935 962 952
0.20 0.10 | 929 947 961 925 981 958 | 936 957 973 936 988 975
0.20 0.20 | 907 934 954 911 992 987 | 903 941 952 919 990 991
0.20 040 | 834 864 891 887 998 998 | 829 8539 882 873 996 999
0.20 0.60 | 796 842 876 824 1000 1000 | 783 825 860 8§13 1000 1000

0.40 0.00 [ 1000 1000 1000 999 1000 999 | 1000 1000 1000 1000 1000 1000
0.40 0.05 | 999 1000 1000 1000 1000 1000 | 999 1000 1000 999 1000 1000
0.40 0.10 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.40 0.20 | 999 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
040 040 | 997 997 997 995 1000 1000 | 996 997 998 994 1000 1000

0.60 0.00 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.05 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.10 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.20 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000

0.80 0.00 | 1000 1000 1000 1000 1000 1000 [ 1000 1000 1000 1000 1000 1000
0.80 0.05 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.80 0.10 | 1000 1006 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000

* BP,, LM,, SLM,, LR, : Test statistics for testing Hy : aﬁ = O(assuming
o2=0) ‘
¥ LM., LR, : Test statistics for testing Hy : UZ = 0(assuming 0% > 0)
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Table 1. Rejection number of tests for testing Hj : aﬁ = 0(Continue)

Py Py

Y1 v | BP, LM, SLM, LR, LM. LR.|BP, LM, SLM, LR, LM. LR,

0.00 0.00 | 32 30 53 24 35 28 31 42 56 22 43 21
0.00 0.05| 47 37 52 31 47 41 37 30 44 24 36 24
0.00 0.10| 48 24 35 14 44 31 24 16 33 24 35 40
0.00 0.20 ] 49 15 24 19 65 46 50 24 32 16 66 37

0.00 0.40 § 145 6 10 1 46 36 103 5 10 4 40 37
0.00 0.60 | 304 0 0 6 41 40 254 0 1 5 43 34
0.00 0.80 | 559 0 0 9 47 37 487 0 2 6 53 34

0.05 0.00 | 223 282 336 247 290 254 | 219 281 342 248 290 253
0.05 0.05 | 185 258 328 224 309 274 | 200 281 346 233 329 272
0.05 0.10 | 175 244 292 204 340 298 | 170 228 286 192 321 281
0.05 0.20 | 145 206 251 182 402 360 | 144 195 255 174 408 359
0.05 0.40 | 107 140 176 115 561 508 | 125 155 183 138 558 507
0.06 0.60 | 94 77 112 80 757 719 | 106 95 117 88 755 713
0.05 0.80 | 163 88 109 92 980 977 | 163 102 130 99 - 984 981

0.10 0.00 | 573 660 727 603 669 609 | 565 643 705 573 649 580
0.10 0.05 | 510 602 650 552 651 608 | 526 619 675 570 667 630
0.10 0.10 | 552 633 694 b48 . 737 657 | 532 627 683 517 726 654
0.10 0.20 | 456 548 613 473 716 718 | 461 536 620 501 789 741
0.10 0.40 | 361 430 506 447 898 882 | 377 466 528 434 920 885
0.10 0.60 | 371 430 477 384 986 978 | 386 430 474 398 989 989
0.10 0.80 | 328 364 405 358 1000 1000 | 350 390 430 382 . 1000 1000

0.20 0.00 | 9256 956 969 953 956 956 | 9256 951 968 953 954 952
0.20 0.05 | 928 957 976 944 974 964 | 926 949 965 941 964 961
0.20 0.10 | 933 954 967 930 977 972 | 925 959 970 943 982 972
0.20 0.20 | 910 939 954 925 982 984 | 916 940 957 931 989 986
0.20 0.40 | 845 887 913 880 998 999 | 863 898 918 904 1000 . 998
0.20 0.60 | 811 852 880 841 1000 1000 | 812 851 879 856 1000 1000

0.40 0.00 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 . 1000
0.40 0.05 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.40 0.10 | 1000 1000 1000 999 1000 1000 | 1000 1000 1000 1000 1000 1000
0.40 0.20 | 999 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
040 0.40 ] 996 998 998 997 1000 1000 | 998 999 999 996 1000 1000

0.60 0.00 [ 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.05 [ 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.10 { 1006 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.20 | 1000 1000 1000 1000 1000 1000 | 1000 1000. 1000 1000 1000 1000

0.80 0.00 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.80 0.05 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.80 0.10 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000

* BP,, LM,, SLM,, LR, : Test statistics for testing Hy : oﬁ = 0(assuming
02=0)
* LM., LR, : Test statistics for testing Ho : oﬁ = 0(assuming a?\ >0)
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Table 1. Rejection number of tests for testing Hy : az = 0(Continue)
P5 Pﬁ
71 v | BP, LM, SLM, LR, LM, LR.|BF, LM, SLM, LR, LM. LR,
0.00 0.00 | 49 57 69 34 58 35 39 41 59 30 41 30
0.00 0.06 | 37 41 56 29 51 37 35 33 47 25 45 38
0.00 0.10 | 49 38 54 39 52 42 33 22 31 23 37 39
0.00 020 | 45 24 38 17 64 42 44 22 30 15 47 39
0.00 0.40 | 69 17 24 10 52 32 84 8 13 9 52 33
0.00 0.60 | 117 6 11 10 53 46 160 2 2 7 56 44
0.00 0.80 | 227 3 3 3 47 47 328 0 1 5 63 35
0.05 0.00 | 214 295 337 256 297 258 | 221 305 374 253 316 262
0.05 0.05 | 218 291 346 261 335 282 | 214 279 332 242 320 278
0.05 0.10 | 190 261 314 219 333 285 | 207 274 326 238 365 305
0.06 0.20 | 184 252 291 209 405 360 | 145 209 259 182 389 339
0.05 040 | 141 182 244 1564 508 463 | 122 168 213 163 534 487
0.05 0.60 | 135 173 215 140 771 729 | 101 124 150 111 768 730
0.05 0.80 | 149 166 192 140 986 979 | 115 96 122 91 985 982
0.10 0.00 | 553 654 700 590 662 598 | B37 605 658 601 612 606
0.10 0.05 | 556 635 685 591 683 648 | 547 639 695 588 681 629
0.10 0.10 | 525 627 680 567 695 646 | 528 620 677 584 715 676
0.10 0.20 } 497 578 631 536 739 702 | 489 562 625 528 767 730
0.10 040 | 424 488 831 510 881 879 | 447 526 594 492 915 895
0.10 0.60 | 433 502 565 490 981 975 | 364 433 476 443 990 986
0.10 0.80} 394 469 516 430 1000 1000 | 337 405 458 389 1000 1000
0.20 0.00 | 937 957 965 954 957 955 | 956 973 982 947 976 949
0.20 0.05| 929 964 974 953 973 964 | 928 954 965 948 967 961
0.20 0.10 | 923 950 964 943 970 960 | 930 949 961 951 970 970
0.20 0.20 | 924 951 958 938 988 983 | 905 937 952 935 991 982
0.20 040 892 922 939 911 1000 999 | 882 913 926 905 999 997
0.20 0.60 | 868 912 930 900 1000 1000 | 846 885 901 876 1000 1000
0.40 0.00 | 999 1000 1000 1000 1060 1000 [ 1000 1000 1000 1000 1000 1000
0.40 0.05 {1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.40 0.10 | 1000 1000 1000 1600 1000 1000 [ 1000 1000 1000 1000 1000 1000
0.40 0.20 | 1000 1000 1000 1000 1000 1000 { 1000 1000 1000 1000 1000 1000
0.40 0.40 | 1000 1000 1000 998 1000 1000 | 997 997 998 999 1000 1000
0.60 0.00 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.05 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.10 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.60 0.20 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.80 0.00 { 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
0.80 0.05 | 1000 1000 1000 1000 1000 1000 [ 1000 1000 1000 1000 1000 1000
0.80 0.10 | 1000 1000 1000 1000 1000 1000 | 1000 1000 1000 1000 1000 1000
* BP,, LM,, SLM,, LR, : Test statistics for testing Hy : cr;‘; = 0(assuming

2
* LM,, LR, : Test statistics for testing Hy : UZ = 0(assuming o3 > 0)
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APPENDIX

Let us consider the LM test for o = 0 given the ex1stence of ranom time
effects . The null hypothesis for this model is Hf 1 o u = 0 (given 0/\ > 0) vs
Hf aﬁ # 0 (given 02 > 0). The disturbance covariance matrix E(uu') can be

written as
Q=0 AL A] + 05 A AG + 02T, (A1)

where n = ) N;. Note that under the null hypothesis of H§ : aﬁ =0,
Q = oidiag(Jyn,) + 02I,. | (A.2)
Therefore, under the null hypothesis ~! becomes, see Baltagi, Chang and Li

(1994)

th) + dzag( ENt) = %In - dz'ag(atht)(,A.B)

0 = diag(
149 Nio? + o} o2

where Jy, = Jn,/Ny and a; = 1/02 — 1/(Nyo? + o%). Using the formula of
Hemmerle and Hartly (1973), we obtain

% = D(Eg)=—%tr[diag(mJM)+d’mg( Em)]

1 . 1 = ) 1
+5“'{dw9(m;;§m"m) + dmg(a—,gENt)}“
1 1 N; -1 1 _
= = - di e ]
2 [Z Nio? + o2 * Z o2 ] T { 149 ((Nta?\ + 02)? Nt)

+ dzag( L ENt)}u =‘O,

58}%- = D(o ,2\) = —%tr[diag(ﬁtév—m(]m)] + zu {dzag(ﬁg%vi’wjm)}u

A
- il {d““(ﬁ"m)}““’

f?TLg - D)= —%tr[{alyI | dzag(atJNt)}A Al] + ;u {Q‘lAlA’Q }

B [ Z < Nyo% +02] ; I{Q-lAlAllﬂ_l}“v (A.4)
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where the fourth equation follows from the fact that D:D; = In,,t = 1,--- ,T.
Also, using the the formula of Harville (1977), we obtain

P gtagmln, = 3 (oo (rrogi) + s zgn)} ]

1 1 N -1
N §{Z(Nt0§+ag)2+z ok }’

27 - - . _ 2
fl-agpls, = sl i)Y =1 o
&°L [ N, . 1 N,
[ B do2003 1 Ho B 5” -dwg((Ntai fk 012,)2JNt>] T2 Z (N0’ j— o2)2’
[ - 8_3,2;2;72. b = %tr :{diag(————(Ntail_i_ P jm) + dzag( = ENt) }A1A’1]

T
lrn-—-T 1
- 5[ ot +; (No? —l—ag)‘?]’

v
Nt

T
— (Ntai -+ 0'3)27

th)A1Aﬁ] =

= %tr {diag( :

o[- 2B, = il smlen)}
+diag(arTy,) A1 Al diag (atht) A1)

N T rZ a:C aa
SRR ZZ TCi]. @)

s=1 t=1 =1 t=1

1

B} =

where Cys is the number of observations that simultaneously observed at time ¢
and s. The element of information matrix with respect to ai given by last term
of equation (A.5) is obtained as follows :

The first term of E[ a(g 5 ] is obtained by

tr [AIAQAlAg] = tr[{A’lAl}Q] = i:ﬁf. (A.6)
i=1
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Next, the second term of E[ — 5%22%5] . is obtained by
# 0

alel Dng alelDlDé e alelDlD}

- agJn,DoD}  agJn,DoDy -+ asJn,D2D}
diag(atJNt)AlAll = R S T
aTjNTDTD'l aTjNTDTDIQ s aTjNTDTDéﬂ

Therefore, we obtain

T
" D, D} Jy, DD}

E

tr [AlA'ldz'ag (atht> AlA'l] = tr [

Il
—
o
Il
—_

s

]~
]~

= tr [ atDstht Dlst] ) (A?)

I
N
o
i
e

8

where Dy = DyDj is the Ny x Ny matrix such that the (i,j) th element is equal
to 1 when the same individuals show ¢ th position in time s and j th position in
time ¢, and zero elsewhere. Therefore,

- 1
tr (Dst']Nt ;t> = Ftct& (A.8)
and equation (A.7) becomes
T T o0 ‘
tr [AlA’ldiag (atJNt)AlA’l] =y tNt“. (A.9)
s=1 t=1

Finally, using the similar derivation of equation (A.7), (A.8) and (A.9), we obtain

NE
™=

tr [diag (atht) AlA'ldz'ag (atht> AlA'l} = asatr [st Dsththt]

@
I
—
o~
il
A

Cy
Nth '

(A.10)

Asat

fl
M=
E

@
I
N
o
I
—

Using (A.6), (A.9) and (A.10), the element of information matrix with respect

to 02 is obtained. Therefore, the information matrix, when evaluated under the



526 Seuck Heun Song and Byoung Cheol Jung

null hypothesis (o2

5, =0) is

Ny—1 n-T T 1 Ny .
Z (Nw +32 7 + Z t n_g4";_ + Et:l (Nt3>\+33)2 Z (Ntfr}\+6'\§)2
~ 1 _ T T T N,
J = 2 "_357: + Zt:l (Nta:+33)2 S Zt:l W )
T N, T NE
| Xt Lot WA 2=l WA |
(A.11)
= LA o) a:a,
where J,,, = Z A—4 -2 Z Z A + Z Z et Cts Thus the resulting LM
i=1 Ty s=1 t=1 s=1 t=1
test statistic is
~ Thi
M = Dih= L D(52)?. (A.12)
det(J)
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