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An Adaptive Test for Ordered Intergartile Ranges
among Several Distributions |

Chul Gyu Park !

ABSTRACT

An adaptive estimation and testing method is proposed for comparing
dispersions among several ordered groups. Based upon the large sampling
theory for nonparametric quartile estimators, we derive the order restricted
estimators and construct a simple test statistic. This test statistic has a
mixture of several chi-square distributions as its asymptotic null distribu-
tion. The proposed test is illustratively applied to survival time data for the
patients with carcinoma of the oropharynx.

Keywords: Quartiles; Dispersion; Ordered hypothesis; Wald statistics; Chi-bar-
square distribution.

1. INTRODUCTION

Many of statistical problems, parametric or nonparametric, arise from the
need of comparing populations behind the data at our hand. If observations are
modeled in some way, systematic parts of the models are of our primary concern
in the comparison. In this case, our comparison is based on the measure of
central tendency such as mean and median( of a random function or process).
Sometimes, however, it might be more interesting to compare groups upon the
measure of dispersion. Let us take an example of evaluating performances of guns.
Since the direction of a gun is easily adjustable, the gun should be evaluated by
the spreadness of its bullet marks rather than the location of the center of those
marks. Comparing variabilities might also be necessary for parametric modeling
process. For instance, it is crucial to decide whether or not to use equal variance
in an one-way ANOVA model because there is a big difference in theoretical
manipulation between the two cases.
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Interquartile range(IQR) is one of typical measures for dispersion which has
some advantages over its colleague ‘variance’. One advantage is that IQR is a
more stable measure than variance in the sense that it is less sensitive to outliers
in the sample. It should also be noted that variance may not exist particularly for
heavy-tailed distributions such as Cauchy or many of extreme-value distributions.
However, IQR, always exists regardless of the underlying distributional types. Let
F be a distribution function. For 0 < p < 1, the pth quantile is defined as
(p(F) = inf{z D F(z) > p}. Based upon the notation of quantile, the IQR of F
can be expressed as

O(F) = C3/4(F) - C1/4(F)-

As is well known, the uncertainty in a random observation increases according
to the magnitude of IQR. In the context of quality control, large IQR indicates
that the corresponding system is in the state of poor control.

If several groups are ordered in a certain way, one may wonder whether the
corresponding IQR’s are also ordered in the same( or opposite) direction. As
we see from Figure 1 in Section 4, there is a stochastic ordering tendency in
survival times among those groups of patients ordered in terms of the number of
tumors. In the similar context, we need to reflect the group ordering effect in
some way when we make an inference on the variability of survival times. One
simple formulation is to construct an ordered testing problem in which we reject

Hy: 0(F) =0(F) =---=0(Fy) (1.1)
in favor of H; — Hy where the hypothesis H is
Hy:0(Fy) <O0(Fy) <--- < 0(Fy). (1.2)

Order restricted testing problems are found in many papers. Bartholomew
(1959) and Chase (1974) consider likelihood ratio tests for testing homogeneity
of means against ordered alternatives in the analysis-of-variance setup. This
problem is extended to repeated measurement situation by Shin et. al. (1996).
Abelson and Tukey (1963) and Schaafsma and Smith (1966) propose contrast
tests for the Bartholomew’s problem. Mukerjee et. al. (1987) develop an optimal
contrast test for comparing several treatments with a control. Another stream
of researches deal with stochastic ordering among multinomial distributions, and
this category of research includes Robertson and Wright (1981), Dykstra et. al.
(1991), Wang (1996), Park et. al. (1998), and many others. However, only a
few researches deal with order restricted testing issues on variability. Kochar and
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Gupta(1986) consider distribution-free tests for testing equality of k variances
against order restricted alternatives. Halperin and Gordon(1987) suggest the
likelihood ratio test for comparing two variances under order restriction. Ahmed
and Kochar(1988) develop a nonparametric test for dispersion ordering between
two distributions.

In this paper, we propose a reasonable adaptive test for detecting the ordering
tendency in IQR among several groups. No distributional assumption is made
except for continuity of the underlying densities. In Section 2, quartiles are esti-
mated under Hy and Hy, respectively. In Section 3, we construct a test statistic
and derive its asymptotic null distribution. Section 4 provides an example in-
volving survival times for carcinoma of the oropharynx. Finally in Section 5, we
discuss some other subjects in relation with the contents of this paper.

2. ADAPTIVE LEAST SQUARES ESTMATORS

For ¢« = 1,2,--- K, let X;1,X;2,--+, Xin, be a random sample from the ith
distribution F; having density f;. We assume those densities are all continuous.
The natural nonparametric estimators for the IQR’s are easily obtained and they
are

e(ﬁl) =C3/4(F1)_C1/4(F2)7 1= 1727ak7 (21)

where F, are usual empirical distribution functions. For future convenience, we
will simplify the notation by using 0;, (;1 and (o for 0(F;), ¢y/4(F3), and C3/4(F3),
respectively. We will put ~ on those parameters to represent the unrestricted
estimators.

Since no formal procedure is available for estimating the parameters under Hy
and H7, we will rely on adaptive least squares method based on the large sampling
theory. First, we restate in the following lemma the asymptotic normality of
sample quartiles( see Theorem B on p80 of Serfling(1980)). |

Lemma 2.1. Let fz be the unrestricted estimator for {; = ((u,Ge)'. Then,
1/ni(fi — () follows asymptotically a bivariate normal distribution with mean
vector 0 and covariance matriz ¥; whose (7,1)th elements are given by

o = Pil =)
I i)

with p1 = 0.25 and pp = 0.75

for1<ji<i<2 (2.2)
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Let 3; denote the estimated covariance matrix of ¥; obtained by plugging fi
and {; into (2.2). There are plenty of methods available for estimating continuous
density functions, and they are well summarized in Silverman{1986) and Wand
and Jones(1995). When computing a kernel density estimator, one should not
use too much small a bandwidth so that the estimated density function avoids
large variability. Based upon the estimated covariance matrix, we may construct
Mahalanobis distance functions such that

Thus, we can obtain the approximate constrained estimators of ¢;’s by minimizing
k
Q(Cla CQ) Tt 7Ck) = Z QZ(CZ)
i=1

under the constraints in Hy and Hj, respectively.
Since {;’s are 2-dimensional vectors, Q(C1,(2,- -+, (k) is a quadratic function
whose canonical form is

k
R(u,v) = Z [ iz —wi)? + 2Bi(zi — wi)(yi — vi) + yilyi — vi)? ] (2.4)

where u = (u1, uo,---,ug) and v = (v1,ve, -, vx). In (2.4) the constants satisfy
a; >0, v >0, and a;y; — B2 > 0. The following lemma can be used to specify
our constrained estimators.

Lemma 2.2. Let (u*,v*) and (u°,v°) denote the solutions to the problem of

minimizing R(u,v) in (2.4) subject to uy — vy < ug —wg < -+ < up — vy and
. a2
U] — U] = Ug—Ug = -+ = U — U, Tespectively. Let Av(i,j) = [Y1_, %(ml -

—B? o
)/ o0, E,%ﬁ]v 1 <i<j<k. Then, we have

_ (m=AN o+ {zi+y — A7 ) Bty

v _ mogt @ty ANy A ) *
(@) w = a1 +2B,+7; and v = 2B+
where A] = max;<;min;>; Av(i, 7), 1 =1,2,- k.
(A7) B+ (A7) (z1— Aoy +(ay+y —A°) B+
b) u° = HY ] I o _ Do+ (@+y— A7) Bty
(b) v aF 281+ and o) ot 2847,

where A} = Av(L,k), [ =1,2,--- k.
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Proof: Part (a): Let A; = u; —v; and 7;, = v; for j = 1,2,---,k. Then,
the problem is equivalent to minimizing 2R(T + A,7) under the constraints
Aj—Djy £0, j=1,2,---,k— 1. With slight modifications, Kuhn-Tucker
condltlons(see pp 314 - 315 of Luenberger(1984)) for this minimization are equiv-
alent to

J
Z[(Tl + Al - .’El)Oél + (Tl - yl)ﬁl] + A_7 = 03 .7 = 1)2a e ak - 1a (25)
=1
k
Mlm+ A —z)en + (n —w)Bi) = 0, - (2.6)
I=1

(Tj+Aj—:Ej)aj+(2Tj+Aj—$j—yj)ﬁj ( yj) =0,7=12,---,k (2'7)
)‘j(Aj—{—l - AJ) =0, >‘j >0, A] _Aj-l-l <0, 5= 1527"'7k -1, (28)

where A;’s are Lagrangian multipliers corresponding to the inequality constraints.
Solving equations (2.7) with respect to 7;’s, we get
Aj)a; + (x5 +y; — Dy)B5 + Yy

(zj — :
T o= , 7=1,2,-- k. 2.9
J aj+2/8_]+’)/] ( )

Putting (2.9) into (2.5) and (2.6) leads to

oy — .
—§j L — A AN =0, =12 k1, 2.10
az+251+7(l Yl 1)+ A J (2.10)
-
- —qy; — A7) =0. 2.11
E az+2ﬂz+’r(l = Ap) (2.11)

Thus, the solution to (2.9) - (2.11) satisfying (2.8) is the desired estimate. Con-
sider a set of estimators, A*, 7% and A\*, whose components are given by

A% = maxmin Av(i,1), §=1,2,--,k,
i<j 1>j

x (z; — A;)O‘j (zj +y; — )51 + yﬂ]
J a] + Z/BJ + 7]

J 2
. oy~ B o
=S T (g oy~ A)), =12,k — L.
,:1014"2511“)’1(! Y z) J
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Note that Av(i,7),:1 < j is the solution of A;’s to

J 2
yo % (z =y —A) =0

—a+20+m
with comstraints A; = A,y = .-+ = Aj;. Scrutinizing into A*, its compo-
nents can be grouped into several level sets, say, I1 = {1,---,41}, Io = {i1 +
oty I ={im—1 + 1, -+, ip} with ip7 = k such that
A;{ - A* < A11-1-1 = A;(Z "< AZM 1+1 7= = A;'RM‘

Equations (2.9) and (2.10) are obviously satisfied by the expressions for 7* and
A*. From the notion of level sets, we have

ary — B7 « .
MM TPy — AN =0, j=1,2,--- M, 2.12
lgl:jaz+25z+%( Y 1) =0, (2.12)

which proves the equation in (2.11). The first and third parts of constraints in
(2.8) can be proved from the fact that

an’l * .
(l—yl—A =0, j=1,2,--- M —1.
mX:uezI: al+2ﬂl+7 )

From the same fact, we can say that

l 2
* AmYm ~ B *
A= E — - A lel;
t Qp + 2ﬁm + Ym (:Em Ym m)’ €4

m=i;_1+1

for any level set I; = {i;_1 + 1,4;_1 +2,---,4;}. Now, the last one to prove is
the second part of (2.8). For this, consider a set of functions

l 2
U Ym — B
e = )t m ~m = 2), L€ .

m=ij_1+1
Since o Ym — B2, > 0, we have —/Gm¥m < Bm < /Tmm, and hence
am + 28m + Ym > 0 + Y — 2\/am')'m = (\/am - \/'Ym)2

from the positivity of o, and ;. Thus, bj(z)’s are decreasing functions of z.
Since A}, € I; are the same and Av(ij—1 + 1,1) > Av(ij_1 + 1,i5) = Ay, 1 € I,
it follows that A} < Av(i;_y +1,1), | € I;, and conseéquently

A =b(A]) > b(Av(ij—r + 1,0)) =0, L € L.
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This completes proving the optimality of A*, 7% and A*. Taking the inverse trans-
formation, we get the optimal solution for the original parameters as given in the
lemma.

Part (b): We can apply the Lagrangian method under the equality constraints
similarly to Part(a). In the Kuhn-Tucker conditions for this problem, no re-
strictions are imposed on the Lagrangian multipliers, and thus we need simply
the equality constraints on A;’s in the place of (2.8). Since these Kuhn-Tucker
conditions are easy to solve, we will omit the detailed procedures. 0

Comparing equations (2.3) and (2.4), Lemma 2.2 can be directly applied to
find our estimators by setting variables appropriately as follows:
n;Gig2 1012 ni0i11

G = i Vi =

PR ) PN ) PSR
04110422 — J;19 04110422 — 0319 04110422 — 0312

(2.13)

Ti = Cio,  Yi = G, Ui = (o, v = (.

When constructing the Mahalanobis distance given in (2.3), we used $3; obtained
by plugging fz(@]) and f;(C;;) into (2.2). Thus, the restricted estimators obtained
by minimizing Q((1, {2, -, (k) under each hypothesis are adaptive ones in the
sense that we used sample information on X;’s to estimate (;’s which are of
our primary concern. This adaptive method is advocated by the fact that the
estimators are much less sensitive to iz—’s than C}’s.

3. TEST STATISTIC AND ITS ASYMPTOTICS

In the previous section, we proposed adaptive least squares estimators for
quartiles. Based upon these estimators, we can construct a statistic for our
testing problem similarly to Wald’s test. Thus, using the same notation as in
Lemma 2.2 with variables in (2.13), the test statistic is written by

To1 = R(u°,v°) — R(u*,v"), (3.1)

and we reject Hy for large values of Ty in favor of Hy — Hy. Since finite sample
behavior of Ty is completely unknown, the test should be based on the critical
values from the asymptotic distribution of Tp;. The following lemma is crucial
for deriving the asymptotic null distribution of our test statistic.
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Lemma 3.1. The test statistic, To1, in (3.1) is simplified as
k

§ : * o2 QiYi /612

Proof: After several simple computations, we get

Bi+vi o
0= T e — AS
T o + 26 + v (@i =i )
and
i — v = ___aii_@'__(m i — A9)
L w2+ T T

Putting these terms into R gives

k 2
Y — B
R o’ oy L ,_A{J 2_;__.
(u®,v°) ;(l’z yi — A7) TR
Similarly, we can show that
k 2
a;y; — B
R{u*,v*) = Ti— s — AR F
(u*, ") ;(z yi — AY) T
Now,
k 2
p—
R(u®,v%) = g — AT AF A0 P
(’LL ’U) g(iﬁz Yi i g z) ai+2,6i+’)’i
g 2 iy — b7
= R(u*,v*) + AF A2
( ) g( ) o + 20+
k 2
* o ‘a'f)’i_ﬁ'
+2 T — 1w — AWAY — A%yt P
;( i — i — A(A] Z)ai‘f‘QBi‘f")’i

Since A* is the same as the isotonic regression of A = z —y with weights {o;y; —
B2)/lai + 2B; + v;) and A's are all equal, the last term vanishes by Theorems
1.3.2 and 1.3.3, and the lemma holds by (3.1). O

The theorem below gives the asymptotic distribution of our test statistic under
Hy. Here, our sample sizes, nq,n2, - - -, ng, are assumed to increase to infinity in
such a way that n;/n; — (> 0),7 = 1,2, .-, k. This situation will be denoted
by n — oc.
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Theorem 3.1. Let d; = r;/[oi11 — 20412 + 0422] where o5 are those in (2.2). Let
d={dy,ds, - ,dp} and D = diag{d1,ds,---,dg}. Then, we have for any t >0

k

lim P[Ty >t = le(j,k;d)P[x;’?_l > 1, (3.3)
J:

where p(j,k;d) is the probability that the isotonic regression of a N(0,D71) -
random vector has ezactly j distinct component values.

Proof: Let ; = n; *[a;y; — 52]/[0s + 2B; + ). From the relations in (2.13), it
follows that w; = 1/[6i11 — 26412 + G422], and hence, nj;/ni — d; by the strong
consistency of G;;;’s. Since A; = éiQ - f@l,i =1,2,--,k are independent, it can
be verified by Lemma 2.1 that \/ni(A —A) Ly z ~ N(0,D~1). This argument
together with Lemma 3.1 implies that

ok
Toy 2 > (2 - Z9)%d;
i=1
under Hy, where Z* is the isotonic regression of the random vector Z following
N(0,D71) and Z? = Zle dlZl/Z{c:1 d;, 1=1,2,--- k. Thus, the theorem holds
immediately by the Corollary of Theorem 2.3.1 of Robertson et al.(1988). O

The null distribution of type (3.3) is called a chi-bar-square distribution, and
its level probabilities, p(j, k;d),5 = 1,2, -, k, are generally unknown except for
very limited cases. If there is no serious deviation among d;’s, then one may use
equal weights approximation, which gives the recuvrs‘ive form

1 k-1 . .
p(.77k) = Ep(j—17k_l)+—k—p(jak—l) fOI‘j :2737"'ak_l (34)

with p(1,k) = -,15 and p(k, k) = % If those weights are seriously deviated, the
level probabilities are usually estimated by simulating the distribution of the
number of levels in the isotonic regression of the random vector generated from
N(0,D~'). Here, we use d = niw;/n1 adaptively for the unknown parameter

vector d involved in the level probabilities.

4. AN EXAMPLE

The testing method developed in earlier sections is illustrated with a data set
presented in Table 1 of Dykstra et. al.(1991). The table contains survival times
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Table 1, Survival time for carcinoma of the oropharynx

Group ‘ Survival time in days
38 107 130 167 172 191 238 243 296 324
1 336 343 351 372 374 376 404 432 446 446
498 525 541 545 560 561 714 755 1574
8L 105 128 154 170 184 216 222 228 230
254 275 279 291 301 310 324 328 338 346
2 347 382 395 407 465 477 518 532 546 553
575 599 608 631 661 666 763 915 929 1064
1092 1317 1317 ‘
11 11 15 4 8 94 99 99 112 112
112 127 134 144 147 147 159 162 172 173
174 177 192 205 208 209 213 219 219 235
3 245 255 256 262 264 266 270 270 272 274
293 307 308 317 327 334 363 369 370 407
414 459 461 480 494 513 517 526 544 548
637 637 696 726 757 782 785 800 805 911
916 1565

for the patients with carcinoma of the oropharynx classified into four groups
according to the amount of Iymph node deterioration. Thus, those groups are
ordered in terms of the number of serious tumors. These data support the hypoth-
esis that their survival distributions are ordered in the sense of uniform stochastic
ordering.

Now, one may have interest in testing whether those groups of survival times
are also ordered in the sense of dispersion measured as IQR. Since the second and
third groups in the original table are rather small, those two groups are combined
and thereby three groups of survival times are given here in Table 1. Note that
we consider only complete observations as we assume in the development of our
methodology. Figure 1 presents the survival functions estimated from the data
in Table 1. Estimated median survival times for those groups are 374.0, 382.0,
and 268.0. These data support the descending ordering tendency rather than the
equality of the median survival times. However, estimates of IQR’s are 271.0,
361.5, and 320.0 which seem to be ordered reversely to median survival times.
So, it is interesting to test whether patients with more serious symptoms show
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1.2

Group 1: solid line
Group 2: dashed line T
Group 3: dot-and-dashed line

0.0
l

0 200 400 600 800 1000 1200 1400 1600

survival time (in days)

Figure 1. Estimates of Survival Functions

more dispersion in survival time. This is why we consider the ordered hypothesis
on IQRs. o ;

Unconstrained quartiles are easily estimated for each group by an usual quan-
tile estimation method. For the constrained estimators, Lemma 2.2 can be di-
rectly used by replacing the variables with those in (2.13). The estimates of
the parameters under each hypothesis are provided in Table 2. Since nid; =
[ivi — B2]/]e; + 2B; + ], we have by Lemma 3.1

k
Tor = Y ni(Af — A7)?d; = 0.8201.
=1

Let pro = —[{d1ds}/{(d1 + d3)(dy + d3)}]*/?> = —0.5246. Then, from the discus-
sions in Section 2.4 of Robertson et. al.(1988), level probabilities are computed
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Table 2. Estimates of parameters

Group n; Constraints (i Cin A, d;
(x10%) (x10%) (x10%) (x107%)
1 29 No .2405 5115 2710 9012
H; .2405 5115 2710
Hy .2200 5371 3171
2 43 No .2420 .6035 3615 .8693
H, .2605 .5996 .3391
Hy 2787 .b958 3171
3 72 No 1670 4870 .3200 1.0230
H, 1484 4874 3391
Hy .1698 4869 3171

as p(1,3;dA) = %— %sin_lpm = 0.3192,p(2,3;cz) = % = 0.5, and p(1,3;a?) =
% + %sin_lplz = 0.1808. Thus, the p-value of our test statistic is 0.1516 by
Theorem 3.1. This result implies that there is no strong statistical evidence even
at 10% level for rejecting the equality of IQR’s in favor of IQR ordering specified
in H1 - H().

5. DISCUSSION

One of referees suggested to include discussions on the likelihood ratio test
(LRT) for our problem. Since we allow no parametric model and assume simply
the continuity of the underlying densities, it is impossible to construct likelihood
functions based on the observations. However, if we discretize appropriately the
variables, we may consider the LRT for dispersion ordering (more general than
IQR ordering) in a multinomial setup. But, even in this case, the maximum
likelihood estimators are completely unknown for multi-sample cases.

Censored observations have not been allowed through out the paper. If the
proportion of censored observations is negligible, we may estimate quartiles from
Kaplan-Meier estimators of survival functions and follow the same procedures
with no change in asymptotic results. However, if the proportion is nonnegligibly
large (that is, converges to a positive value as sample size goes to infinity), the
consistency of the Kaplan-Meier estimator is not guaranteed. Moreover, it is
difficult to estimate f;((;;) and f;(Ci) in (2.2) unless particular model assumptions



Testing for Ordered Interqartile Ranges 75

are made for censored observations.

The level probabilities, p(j, k;d), 7 = 1,2,---,k, have no closed expressions
for general weight vector d = (di,dg,---,dg) if & > 4. In such case, estimated
level probabilities are usually suggested. First, generate sufficiently large num-
ber, say, M, of vectors from the k-dimensional multivariate normal distribution
N(0,D71) where D = diag{dy,dz, ---,dy}, and denote those sample vectors by
X1, Xg, -+, Xp. Compute the isotonic regression, X, of X; for each 7 using the
pool-adjacent violators algorithm (PAVA) discussed in Chapter 1 of Robertson
et al.(1988). Let m; be the number of X’s having exactly j distinct component
values. Then, the estimates of p(j, k; d) are given by T, j =1,2,- -, k.
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