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Bootstrap Inference on the Poisson Rates
for Grouped Data

Kee-Won Lee! and Woo-Chul Kim?

ABSTRACT

We present how bootstrap methods can be used to conduct inference on
the rates of Poisson distributions when only the grouped data are available.
A theoretical justification for the validity of bootstrap is given with an il-
lustration of proposed method using a data set obtained from a pathology
laboratory test. Traditional asymptotic methods are compared with boot-
strap methods in computing the estimated standard errors and achieved
significance levels for one sample and two sample tests. Bootstrap methods
are shown to possess a nice property that the small sample distribution of
the relevant statistic can be readily obtained from the bootstrap copies.

Keywords: maximum likelihood method; minimum chi-square method; paramet-
ric bootstrap; achieved significance level

1. Introduction

Haitovsky (1982-1988) states that there are four types of grouped data from
the reason why the grouping is needed. The first type is from the purely descrip-
tive reason to summarize the data in a condensed form. The second reason for
grouping data arises in studies where the data sets are obtained from confidential
sources where it is necessary to maintain the privacy of the individual’s record.
The third reason arises when we deal with a large data sets, where grouping is
desirable to reduce the cost of data handling. The fourth reason comes from
incomplete measurement.

Now, we present another type of grouped data where the reason for grouping
is mainly due to practitioner’s own tradition to simplify recording. We observe
a number of occurrences of a random phenomenon which we believe follows a
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Poisson distribution. The number of occurrences are grouped into a few ordered
categories, and only the frequencies in each categories instead of the original
countings are recorded. This practice often occurs in the analysis of laboratory
test data, where one seeks a relationship between the number of occurrences
of a certain positive cell type and the status of the corresponding disease in
experimental pathology.

We show how bootstrap can be used to conduct estimation and hypothesis
testing for this'unique type of gruped data. A formal theoretical justification is
given to show that the bootstrap approximation is valid, that is, at least as good
as traditional asymptotic approach.

TABLE 1.1 gives a typical data set of this type. The data set was obtained
from Lee et al. (1989), where they studied the relationship between the occur-
rences of positive Langerhans cells and the neoplastic transformation of the uter-
ine cervix. The cells were turned up through S-100 protein on the sample tissues
sent out from the Department of Pathology in the College of Medicine at Hallym
University.

After the positive Langerhans cells were identified, the results were classified
and recorded in the following manner. If there were no positive Langerhans cells,
then the case was categorized as " —"". If there was only 1 positive Langerhans cell,
then the case was categorized as "+". If there were 2, 3 or 4 positive Langerhans
cells, the case was categorized as "+-". Finally, if there were 5 or more positive
Langerhans cells, the case was categorized as "/ +++".

TABLE 1.1: Data Set

n_n 7]

Groups " "y "y Ly

Chronic Cervicitis
Dysplasia
Carcinoma in situ

o o o ™
=N o oo+
[JCER~ RN (=)
o oo o

Invasive Carcinoma

In the data set, Chronic Cervicitis patient group plays the role of control.
Main purpose of the study was to find out whether there is a tendency of increase
in the rate of occurrences as the status of cancer aggravates. Statistical issues
relevant with the problem will be considered in what follows.

In section 2, maximum likelihood and minimum chi-square methods are used
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to estimate the unknown rate of occurrences. Both are known to give asymp-
totically equivalent estimated rates. The standard error of the estimated rate
is computed using both asymptotic and bootstrap methods. The example con-
firms that the bootstrap offers estimated standard errors close to those obtained
from the asymptotic method. In this problem, the bootstrap method has a def-
inite advantage over the asymptotic method in that the derivatives of each cell
probabilities are not necessary to estimate standard errors.

In section 3, hypothesis testing procedures are developed for one and two sam-
ple cases. Asymptotic and bootstrap methods are used to compute the achieved
significance levels for various test statistics. Again, the bootstrap method has
an advantage over the asymptotic method for the same reason as above when
we use the naive observed difference as the test statistic. Besides, the sampling
distribution of the test statistic can be obtained from the bootstrap copies. We
draw the plots of sampling distributions for each test statistic.

2. Estimation of the Rates

2.1. Methods of Estimation

Suppose that X1,..., X, are independent and identically distributed random
sample from a Poisson distribution with rate of occurrences A. Upon observation,
the numbers of occurrences are classified into a few, say K, ordered categories in
a well-defined manner as described in the previous section. Let O1,..., Ok be the
observed frequencies of each categories, and let my,...,7x be the corresponding
cell probabilities of categories. Then Ey = n x m for K = 1,..., K are the
expected frequencies of each categories. We use the notations O, 7, and E) for
simplicity.

Either the maximum likelihood method or minimum chi-square method can
be used to estimate A\ for this problem. A Pearson type minimum chi~squafe
estimator can be obtained as follows:

2
Ap =argr§1>iglz Qf?i\—)—, (2.1)
where the sum is taken over all the categories. The maximum likelihood estimator
is essentially equivalent to the minimizer of Kullback-Leibler measure, and can
be obtained as follows:

| XK_L:argrgg{—2ZOlog(0/E>\)}. (22)
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In the actual computation, we would recommend a search method rather than
Newton-Raphson type recursion, which need first and second derivatives of 7.
We started searching from 0.01, and increased the steps by 0.01 until we hit the
point which gives the minimum value in equation (2.1) or in equation (2.2). The
fact that the quantity we want to minimize tends to a convex function as the
sample size increases was crucial to find the minimizer. It turned out that the
search method actually gave an answer faster than Newton-Raphson recursion.

2.2. Standard Error of Estimated Rate

Once the estimator of A is obtained, we need to know the likely size of random
variation. Either traditional asymptotic methods or computer intensive bootstrap
methods can be used to approximate the standard error of estimated rate.

A. Asymptotic Approach

The estimated rates obtained from equations (2.1) and (2.2) have the following
asymptotic properties. See Rao (1957) for the case of minimum chi-square.

Proposition 1. Let wy be the derivative of 7, with respect to A. Then, the
sampling distribution of /n(A — \) tends to a normal distribution with mean 0
and variance (3" 72 /7)1, and (3 7r’5\2/7r;\)_1 tends to (3" 2 /m\) ! weakly as
the sample size increases.

Therefore, the standard error of the estimated rate can be approximated as

SE(N) ~ /(32 72/m)~1/n. (2.3)

The quantity (3 752/m))~! will be denoted by o2()\) for various choices of A
throughout the paper. Further simplified notations without parentheses, such as

o? and 62, will be used in place of 62()\) and 02(:\) respectively unless there is
any chance of misunderstanding.

An estimated standard error of X based on an asymptotic method can be
obtained by plugging in ) in place of ) in the formula (2.3), that is,

SEA(}) =6/y/7. (2.4)
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B. Bootstrap Approach

The bootstrap, initiated by Efron (1979), can also be used to approximate the
standard error of the estimated rate. A Monte Carlo approximation to the boot-
strap estimated standard error of X can be obtained as follows.

Step 1. Choose a random sample of the same size from the fitted Poisson distribu-
tion with rate \.

Step 2. Mark the sample values according to the given rule, and set up the bootstrap
observed marking frequencies, say O*.

Step 3. Compute the bootstrap minimum chi-square estimator and the bootstr:ip
maximum likelihood estimator. That is,

1% _ . (O* - E)\)Q
Ap = arg r}\n;glz E, , | (2.5)
for minimum chi-square method, and
N ing —2% O0*log(O* 2.
L argl;ﬂ;g{ > 0%log(0 /EA)}, (2.6)

for maximum likelihood method.

At this stage, we can check that the following propostion holds from Proposition
1 and triangular array convergence theory.

Proposition 2. The sampling distribution of /72(A* — 1) tends to a normal
distribution with mean 0 and variance ¢, and that o%(\*) tends to o2 weakly as
the sample size increases, for almost all sample paths.

Therefore we can be sure that the bootstrap estimated standard error is at least
as good as the one obtained from the asymptotic method. Even better, we can
completely avoid computing the derivative of m) through Monte Carlo approxi-
mation.

Step 4. Repeat Step 1-Step 3 for a sufficiently large number of times, say B times,
to obtain A, ..., A%5.

Step 5. A Monte Carlo bootstrap estimated standard error of ) is given by

B

SE(A) = \‘ >0 - X2/(B - 1), (27)

b=1

where A* = Y2 \/B.
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For this problem, the Monte Carlo bootstrap method has a definite advantage
over the asymptotic method in that we do not need derivative of 7y to obtain the
estimated standard errors, and in that we can approximate the sampling distri-
bution of estimated rates. We can also approximate the sampling distribution of
chi-square statistic computed during the estimation procedure.

2.3. Summary of Estimated Results

TABLE 2.1 summarizes the values of estimated rates and their estimated stan-
dard errors. Each patient group is given sequential numbers in order to simplify
the notation and make them easy to identify. Standard errors calculated from
asymptotic approach in the equation (2.4) are denoted by SE 4, while the Monte
Carlo bootstrap standard errors obtained from (2.7) are denoted by SEg npoot,
where nboot is the number of bootstrap replications. In our case nboot is set at
50, 100, and 200. These numbers were chosen according to the suggestions given
in Efron and Tibshirani (1993).

TABLE 2.1: Estimated Rates with SE’s and Goodness of Fit Measure (denoted
by GOF) Computed from the Asymptotic Method

Method Estimated Rate SEA SEB,50 SEB,IOO SEBJQOO GOF

A1 =0.62 20 21 .19 22 3.43
Min 32 Ay =1.73 40 36 41 37 381
A3 = 3.95 61 64 61 64 1.60
A =4.73 .82 81 .85 87 1.49
A1 = 0.50 .18 .19 18 18 4.91
ML §2 =1.88 A1 46 35 42 6.25
As = 4.11 62 64 .66 63 1.65
A4 = 5.01 87 85 .89 .86 1.29

As expected from the data, it is obvious that there is an increasing trend in
the rate of occurrences as the status of cancer aggravates. We can also observe
that estimated standard errors computed using bootstrap methods are very close
to those obtained from asymptotic methods, even when the sample sizes are not
very large as in the case of the Invasive Carcinoma patient group. Furthermore,
the minimum chi-square method and maximum likelihood method give similar



Bootstrap Inference on the Poisson Rates 7

results.

We may also notice that the rate for the Dysplasia patient group is far less
than that of either the Carcinoma in situ patient group or the Invasive Carcinoma
patient group, while those two rates are not far apart. Therefore, a natural
question arises as to whether the difference between the rate for the Invasive
Carcinoma patient group and that for the Carcinoma in situ patient group is real,
or if it is just due to chance variation. If the difference turns out to be just due
to chance, the next question is how far the rate for the Dysplasia patient group is
from the combined rate for the Invasive Carcinoma patient group and Carcinoma
in sity patient group in terms of ASL. These questions will be answered in the
following section, through hypothesis testing.

One of the big advantages in using the bootstrap method is that we can ap-
proximate the sampling distribution of the estimated quantity under study by
the empirical distribution of bootstrap copies of the estimator. FIGURE 2.1 and
FIGURE 2.2 depict the approximate sampling distributions of standardized es-
timated rates, (A* — 5\)/S/E Estimated rates for FIGURE 2.1 and FIGURE 2.2
are obtained from the minimum chi-square and the maximum likelihood method
respectively. Cumulative distribution function (cdf) of a standard normal dis-
tribution is drawn behind for comparison. We plotted the empirical cdfs to
accommodate four plots all at once.

We may observe that as the number of bootstrap replications increases, the
empirical cdfs of the bootstrap standardized estimated rates get closer to the cdf
of standard normal distribution.

In addition to the sampling distributions of estimated rates themselves, we
can also obtain the sampling distributions of goodness of fit measures either from
minimum chi-square or maximum likelihood method. These values are obtained
as the minimum values of either (2.1) or (2.2). It is well known that the sampling
distributions of these goodness of fit measures tend to chi-square distributions
with suitable degrees of freedom as the number of observations increases. We
plotted the cdf of chi-square distribution in the background for comparison. Note
that we used different number of degrees of freedom for each groups of patients
out of trial and error. We can also check that the empirical cdfs get closer to the
theoretical distribution as the number of bootstrap replications increases.
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FIGURE 2.1: Bootstrap Sampling Distribution of Standardized Estimated Rates,
(A*—X)/SE from Minimum Chi-square Method. Cumulative distribution function
of standard normal distribution is plotted for comparison.
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FIGURE 2.3: Bootstrap Sampling Distribution of }_(O* — E5)?/E;. Cumulative
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3. One Sample Test

3.1. Theory

Consider a one-sided hypothesis that the unknown rate \ is greter than a pre-
viously known value of Ag. We choose a naive difference, unstudentized difference,
and studentized difference as our test statistics, that is,

o= ( 0),

T, = (A—Xg)/SEo,
T3 = (A—X)/SE,

P
S

where SEy = 0¢/+/n and SE = G/v/n. Suppose that T} = t;, Th = o, and
T3 =t are observed. Two-sided test procedure can be implemented in a similar

way.

A. Asymptotic Approach

From the distributional properties of the estimated rates, the Achieved Signifi-
cance Levels, denoted by ASL throughout the paper as suggested in Efron and
Tibshirani (1993), for T}, T%, and T3 are given by

ASLl = PI‘{(S\N%) - )\0) > tl} =~ PI{Z > —},

SEg
(:\New - )\0)
SEq

ANew — A
ASL; = Pr{(ANT‘;—O)ng}zpr{zng},
New

ASL, = Pr{ >t2}zPr{Z>t2},

respectively, where Z denotes a standard normal distribution. Ayeq is a hypo-
thetical random variable with the same distribution as A generated under the null
hypothesis, and SEney = 6new// T

B. Bootstrap Approach

The bootstrap can also be used to approximate the ASL. Repeat Step 1-Step 4
described in section 2, and compute SE; =of/v/nfor b=1,...,B. Then, the
bootstrap ASL’s and their Monte Carlo approximations are given by

ASLY = Pr{(X* - > tl} ~ #{(i;; -\ > tl}/B,
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(A" =) } {(A?;—)\) }/
ASLY = P{——A—>t ~ —— >t B,
5 T 5o 2 # SE 2
ASL; = Pr{(i/:T)\) > 753} ~ #{EAIJ/\_*A) > t3}/Bv
SE
where SE = 6*/y/n.

We can check that the ASL’s obtained from the bootstrap method are asymp-
totically correct from the distributional properties of bootstrap estimated rates.

Furthermore, in case of Tp, the bootstrap method has an advantage over the
asymptotic method for the same reason as has already been noted in the previ-
ous section.

Note that we used (A* — ) instead of (A* — Xg) for the bootstrap to work
properly, following the guidelines in Hall and Wilson (1993). In order to make
an heuristic justification, recall that we drew the bootstrap data set from the
fitted Poisson distribution with rate 5\, which means that X plays the role of Ap
in the bootstrap world. Therefore, we should use M in place of Ag in order to
reflect the null hypothesis. Refer to Efron and Tibshirani (1993), and Hall and
Wilson (1991) for discussion on bootstrap hypothesis testing.

3.2. Test Results

In this section we will conduct a one-sided test to find out whether the rate
of occurrence of positive Langerhans cells for the Dysplasia patient group is sig-
nificantly greater than a known value 1.0. TABLE 3.1 summarizes the computed
results.

TABLE 3.1: ASL’s for One Sample Test (B = 1,000)

Method ASL; ~ ASL, ASL; ASL® ASL: ASL}
Min x? 10060 0336 0320 .0100 0170
ML 0012 0158 0210 .0020 .0030

We set the number of bootstrap replications at B = 1,000 to compute Monte
Carlo bootstrap ASL’s. Note that ASL], bootstrap ASL for the simplest test
statistic, is close to ASLg3, the asymptotic ASL for the studentized test statistic.
We would recommend bootstrap appioach with 77 as test statistic in view of
computing efforts and easy implementation. From the results in the TABLE 3.1,
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we may conclude that the rate for the Dysplasia patient group is significantly
greater than 1.0.

Now another advantage of using Monte-Carlo bootstrap comes in. We can
approximate the sampling distribution of the test statistics from the bootstrap
copies. FIGURE 3.1 shows the emplrlcal cdfs of the above three test statistics
for each method of estimation. The values of T} are divided by SE for proper
comparison. We can check that the distribution of T} has a heavier tail than
that of standard normal for both methods of estimation, but the distributions of
the other two test statistics are well close to that of standard normal.

4. Two Sample Test

4.1. Theory

Suppose that we have two random data sets of grouped frequencies obtained
from two Poisson random samples of size n; and ny with unknown rates \; and
Ao respectively. Consider a one-sided alternative hypothesis that one of the rate
is greater than the other vs the null hypothesis that the observed difference may
be due to chance variation. '

We can compute the estimated rates A1 from the ﬁrst grouped data, and )\2
from the second grouped data in the usual way. In addition, denote the pooled
estimated rate by A Pooleds Which is computed from the pooled grouped data. We
choose a naive difference and a studentized difference as our test statistics, that
is, ‘

T = (A—A2),
(A= o)
&Pooled(l/nl + 1/”2)1/2 .

Ty =

A. Asymptotic Approach

Let Apooied be the hypothetical common unknown rate under the null hypothesis.
Then, we can check that the distribution of (A — A2)/{8pootea(1/n1 + 1/n2)+/2}
tends to a standard normal distribution, and that 6 pge1eq tends to opyreq under
the null hypothesis. Suppose that 77 = t; and T = t5 are observed. Then the
ASL’s are given by

ASL; = Pr {(;\I,New — Xa,New) > t1}
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131
~ PI‘{Z > = }7
OPooled(l/nl + 1/”2)1/2

5\1 New — 5\2 New } { }
ASL, = Pr{ ’ ’ Sty b R PriZ >ty b,
2 5'Pooled,New(1/n1 + 1/”2)1/2 ? ?

where 3\1,New, 5\27N6u;, and j\pooled,]\]ew are the hypothetical random variables
generated under the null hypothesis. T'wo-sided test can be conducted in a similar
way.

B. Bootstrap Approach

Bootstrap ASL’s for two sample case can be implemented as follows:

Step 1. Choose a bootstrap data set of size n; + no, which consists of categories
obtained from the fitted Poisson distribution with rate Apoosed-

Step 2. Compute ;\‘{ from the first n; marking frequencies of the bootstrap data
set, 5\3 from the rest of the bootstrap data set, &}oaled from the pooled
bootstrap data set, and 65,4 from Ap, .q-

We can check that the sampling distribution of (\f—A%)/{5% .0 (1/n1+1/n2)/?}
tends to a standard normal distribution, and that 6p,,,,; tends to opyeq for
almost all sample paths under the null hypothesis. This fact can be used to
check that the bootstrap ASL’s are asymptotically correct.

Step 3. Repeat Step 1 and Step 2 for a sufficiently large number of times, say B
times, to obtain \} b A3 b )\b Pooleds A4 G pooreq for b=1,..., B.

Step 4. The bootstrap ASL’s and their Monte Carlo approximations are given by

ASLE = Pr{(j\’{ ~35) > tl} ~ #{(A;,b ~ 55> tl}/B,
=X }

ASLY = P { >t

g ' 6}‘300led(1/n1 + 1/n2)1/2 2

(ATb ‘5‘3 b) }/
>t B.
#{Jb Pooled(l/nl + 1/712 1/2 2

Note again that, in case of T}, the Monte Carlo bootstrap has a definite advantage

Q

over the asymptotic method.
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4.2. Test Results

We give a two sample hypothesis test of whether the rate for the Invasive
Carcinoma patient group is significantly greater than that for the Carcinoma in
situ patient group. The results are summarized in the upper half of TABLE 4.1.

TABLE 4.1: ASL’s for Two Sample Tests

Test Method Apgoled GPooted ASL1 =~ ASL,  ASL] ASL3

Hy: Xy > A3  Min x? 4.26 2.40 0.21600 0.21000 0.21900
(B=1,0000 ML 4.46 2.49 0.19100 0.20000 0.22900
Hi:Azq > A2 Min x? 3.26 2.02 0.00014 0.00020 0.00020
(B =10,000) ML 3.45 2.09 0.00016 0.00020 0.00010

From the computed results, we may conclude that the observed differences be-
tween two estimated rates can be explained by chance variation. Again, we would
recommend using the bootstrap with the naive difference as the test statistic. We
may observe that all the approximate ASL’s are very close.

Again, we plotted the empirical cdfs of the bootstrap copies of test statistics
against the cdf of standard normal distribution in FIGURE 4.1. The values of
T} are divided by Fpogrea(l/n1 + 1/712)1/2 for proper comparison. Note that the
bootstrap sampling distributions of both test statistics have heavier tails than
that of standard normal.

Finally, we test how far the rate for the Dysplasia patient group is from the
combined rate of the Carcinoma in situ patient group and the Invasive Carci-
noma patient group in terms of ASL. Denote the combined rate by Ass. The
computed results are summarized in the lower half of TABLE 4.1. We needed
more bootstrap replications to compute ASL in a proper order of magnitude, and
used B = 10, 000.

From the computed results, we may conclude that the observed difference is
highly statistically significant. We may note that all the ASL’s are remarkably
close for this moderate size of sample.

FIGURE 4.2 gives empirical cdfs of bootstrap copies of each test statistics
for each methods of estimation. Again, the bootstrap sampling distributions of
both test statistics have heavier tails than that of standard normal. Especially,
the bootstrap sampling distributions from the minimum chi-square method look
even skewed.
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FIGURE 4.1: Bootstrap sampling distribution of test statistics for testing
whether the rate of the Invasive Carcinoma patient group is significantly higher
than that of the Carcinoma in situ patient group. The values of T} are divided
by G pooted(1/n1 + 1/ny)'/? for proper comparison.
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comparison.
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5. Concluding Remarks

We developed statistical methods that can be used for conducting an inference
on the rate of a Poisson distribution in a situation where only the grouped data
are available. The Monte Carlo bootstrap method is shown to possess a number of
desirable properties over the traditional asymptotic methods. We also illustrated
how typical bootstrap hypothesis testing procedure can be implemented. As a
by-product of Monte-Carlo bootstrap method, the approximate sampling distri-
butions of estimated rates, gooduness of fit measure, and various test statistics we
obtained and plotted. S-Plus is used for numerical works.
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