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Regression Diagnostics Using Residual Plots?)

Kwang-Sik Oh?)
Abstract

It is necessary to check the Ilinearity of selected covariates in regression
diagnostics. There are various graphical methods using residual plots such as partial
residual plots, augmented partial residual plots and combining conditional expectation
and residual plots. In this paper, we propose the modified pseudolikelihood ratio test
statistics based on these residual plots to test linearity of selected covariate. These
test statistics which measure the distance between the nonparametric and parametric
models are derived as a ratio of quadratic forms. The approximate distribution of
these statistics is calculated numerically by wusing three moments. The power
comparision of these statistics is given.
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1. Introduction

The problem of checking the linearity of selected covariates is fundamental in regression
diagnostics and there are various methods of formal and informal approachs. The common aim
is to examine the relationship between the residuals from a linear model and some selected
covariate for patterns indicating non-linearity. A popular formal method is the Durbin-Watson
test whose original motivation was to detect first-order autocorrelation in errors. However if a
linear model is fitted to a non-linear relationship then the patterns in the residuals are in
practice indistinguishable from those of positive autocorrelation, and so the test is often used
to detect non-linearity by replacing ordering in time with ordering in the covariate. Munson
and Jernigan(1989) develop this technique into a curvature test by measuring the roughness of
a spline which interpolates the residual plot. Azzalini and Bowman(1993) proposed a
pseudolikelihood ratio test which measures the distance between the true regression function
and a fitted parametric model. Here the true regression function is estimated by nonparametric
smoothing.

Informal approachs are based on graphical methods and particular on various kinds of
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plots such as added-variable plots, component-plus-residual (C+R) plots, which are known as
partial residual (PRES) plots, augmented partial residual (APRES) plots, and combining
conditional expectation and residuals (CRRES) plots. Nonparametric regression can be used as
a visual means of assisting the detection of trends in residual plots, as illustrated by LOESS
of Cleveland(1979) or by kernel.

In this paper we investigate residual plots and apply these plots to the pseudolikelihood
ratio test which was proposed by Azzalini and Bowman(1993). Power comparision is givn by
simulation. In Section 2 we explore various residual plots. The modified pseudolikelihood ratio
test statistics are suggested in Section 3. Simulation study and conclusions are given in
Section 4.

2. Residual Plots

Suppose that the "true” model is
y=a,t+al x,+e(x,)+te QD
where y is response, pXx1 covariates x partitioned into a (p—1)X1 covariates vector x,
and a single covariate x5, £ is an unknown function with E(g) =0, E(e)=0, and
Var(e) = ol Many authors considered the following linear regression model to detect
curvature of g{(.):
y=Bot+ BT x,+ B x9+terror (22)

Let e denote OLS residual, b, and b, denote OLS estimator of B, and B3, e
denote a residual from the OLS regression of ¥ on x,;, and ey, denote a residual from the
OLS regression of x, on x;.

An added-variable plot for x, is a two-dimensional plot of ey, versus ey;. The slope of
the OLS regression of this plot is b, and the residuals from this regression are the same as

the residuals e from model (2.2). Thus, the presence of curvature in this plot means that
there is curvature in the plot e versus ey, which has implications for the lack of fit of

model (2.2). According to Cook(1996), added-variable plots seem particularly well suited for
studying influence, and curvature in such plots is an indication of a model deficiency.
Added-variable plots should not be used as basis for selecting a covariate transformation or
for diagnosing curvature. The absence of curvature in an added-variable plot should not

necessarily be taken as assurance that g{(.) is linear.

A component-plus-residual (C+R) plot of x5, which are also known as a partial residual
(PRES) plot, is a plot of e+ b, x5 versus x,. This plot should perform well when the.

model (2.2) is a good description of the data or when the conditional expectations E( x;| x5),
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7=1,...p~1, are all essentially linear. But nonlinear relationships among the covariates are also
a problem for PRES plots.

An augmented partial residual (APRES) plot for x, suggested by Mallows(1986) is
constructed from the model :
y=Bo+ Bl %+ By x9+ Bpxiterror (23)
The APRES plot for x; is a two-dimensional plot of e+ by x3+ by x 3 versus Xxj. This

plot might be expected to give a more accurate depiction of g{.) than a partial residual plot,

at least when g(.) is strongly quadratic or when E( x| x,) is nonlinear.
A CERES plot for x5, suggested by Cook(1993) is constructed from the model :
y=Bo+ B{ %1+ Bim(x)+error (24)
where m( x,)=FE( x| x;)— E( x,). The CERES plot for x, is a plot of e+ b 1 m(x,)
versus X . This class of plots was called by CERES plots because of “combining Conditional
Expectation and RESiduals”. To obtain CERES plots, m( x5) could be estimated by using

nonparametric regression. An estimate E( x ;| x;) of the j-th coordinate of E( x,) x,) can
be obtained by extracting the fitted values based on smoothing the plot of x,; versus x,.
The nonparametric regression estimates EX xyl x9), 3=1,..p-1, are then used as a
replacement for E( x| x,) in (2.4) and the CERES plot constructed in the usual way. We
can obtain the estimate of m( x,) by LOESS and nonparametric kernel methods in this paper.

This plot might be useful for obtaining an impression of curvature of g{(.) when E( x| x,)

are neither linear nor quadratic.

3. Testing linearity in residual plots

Since residual plots are useful for obtaining an impression of non-linearity, we can apply
the test of Azzalini and Bowman(1993) to the problem of testing linearity of selected covariate

x5 using residual plots. We consider PRES(APRES or CERES, similary) vector as our new
response vector y* and assume the model as follows,
yi=g(lxs)+ e, i=1..n (3.1
where y } is the i-the element of PRES(APRES or CERES) vector y' and ¢, are iid from

unknown distribution with mean O and finite variance o¢% The function g{(.) can be
estimated without making parametric assumption on shape by employing nonparametric
smoothing. The kernel approach provides a simple estimator through the formular
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£.(xh) = 2 [y KEGD BEEGD] 62)

where K(.) is a kemel function and the smoothing parameter 2 controls the degree of
smoothing which depends on n and trends to 0 as # — o but nk— o, For convenience,

the numerical work in this paper assumes the weight function to be the standard normal

density. Because the estimator § is linear in the response variable y*, the fitted values

2=(Ax), ... Az ) =Wy (3.3)
where W is an 7zX# matrix of constants depending on x,% and K(.).
The aim of this section is to assess whether model (3.1) can be reduced to the simple

linear form. The pseudolikelihood ratio approach arises from the formal expression of the
likelihood ratio for the hypotheses

Hy: g(x)=a+bx for some a and b
H,: g(x) is a smooth fuction.
The likelihood under H, is evaluated at g(x) = a+ bx where a ,3 are LSE, and the

likelihood under H, is evaluated at g(x)=g(x) in (3.3). After a standard transformation, we

led to a test statistics of the form

(RSS,— RSS;)
RSS,

where RSS,, RSS, denote the residual sums of squares after fitting the linear and smooth

F =

models respectively. An expression for F is given by
(y "My y'— v "M, y7)
y M,y
where M,=1-X (X'X)'X°, M,=(I-W)({U—W) and X is the design matrix

F =

which has first column 1, and second column x . Since (I— W) 1,=0 , the distribution

of F is free from a . But F is not free from & because of (I— W) x s 0. Therefore, we
would like to construct a formal test of linearity based on F , large value being significant,
the dependence of the distribution of F on the unknown parameter b makes F unsuitable
for hypothesis testing. To overcome the above problem, Azzalini and Bowman(1993) consider
the vector e = M 0 y' and apply the pseudolikelihood ratio principle to e’ instead of y*.

The modified pseudolikelihcod ratio now arises formally from the hypotheses
Hi: E( e )= 0 for some x;

H1: E( e ) is a smooth function of the x; values,

and leads to the test statistic
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., * ., »
e — e M, e )
., *
e Mle

Large values of this statistic are significant.

Fro— (e

(34)

Since this statistic is similar to the statistic of Azzalini and Bowman (1993), we can
obtain the probability by calculating numerically. Under a normal assumption on the

distribution of e and

P(F*>t)=P( e "U-(1-t) M) ¢ >0)=P(e 'Ae >0) 35
the problem is reduced to the computation of the distribution of a quadratic form of normal
variates which under the null hypotheses have mean 0 and cov( e )= M o because the

scale parameter ¢ may be set equal to 1 without loss of generality since statistic (3.4) is
scale invariant. Johnson and Kotz (1972) provide some standard results on the distribution of
quadratic forms like e"’Ae. Specifically, the evaluation of equation (3.5) can be shown to

be equivalent to the computation of distribution of linear combination of independent xz

-variates with coefficients given by the eigenvalues of M,A. However, for most practical

purposes, the exact evaluation of (3.5) is at the same time unnecessary and computationally
burdensome. It is widely recognized that one can obtain a reasonably accurate approximation
to a distribution function replacing the original distribution by a member of a parametric class
by matching the first three or four moments with the original ones. In our case, the s-th

cumulant of e ‘A e’ is

kBs= 21G—Dltr ( MgA)°® (36)
which does not require explicit computation of the eigenvalues of MyA. And the s-th
cumulant of a+bx % is 2°7'c b (s—1)! for s=2 and cb+a for s=1. Let first three
cumulants ofa+ & x% and those of ¢ ‘A e be equal, then we can calculater

Pla+ by i > 0). Thus we can obtain the required distribution.
4. Simulation Study and Conclusion

A small power study was carried out to compare the performance of the modified
pseudolikelihood ratio test. Data were simulated from the model

y=1x,+ x,+g( x3), g(x3)=———ar;3— (4.1)
l1+e

where the x5 are generated from a uniform random variable on the interval (0, 30),

x; = x3 '+ MO0, 0.1%) and x, = log(x3)+ M0, 0.252). No error was included

so that v is a deterministic function of the three covariates. This allows the conclusions to



316 Kwang-Sik Oh

be illustrated more clearly than if an additive error were included but will not change the
qualitative nature of the results. Sample sizes n=10, 15, 20, 25 were considered. In each case
1000 samples were generated and the proportion of times that the observed significance was
below a= 0.05, 0.1 was counted. The bandwidth of kernel function is 0.5 and the number of
smoothing data in LOESS is fixed at n/2 for obtaining conditional expectation in CERES. The
bandwidth of kernel function for obtaining test statistic is 0.25. We choose a= 1.94, 9.68, 19.36,

96.82 in curve g(.) using roughness measure f (g2

We use the notations RES, PRES, APRES, CERES(L), and CERES(k) for residual, partial
residual, augmented partial residual, conditional expectations residual based on LOESS, and
conditional expactations residual based on kernel curve respectively. We show the empirical
power obtained by the modified pseudolikelihood ratio test statistics in Table 4.1. In this table,
RES means the test statistic of Azzalini and Bowman. In Table 4.1 the test statistic of
Azzalini and Bowman is highly affected by roughness measure ¢ , but the other test
statistics are not affected by a . As the sample size is larger, the empirical power of all

statistics is higher. In case a=1.94, the empirical power of the modified pseudolikelihood
ratio test statistics is higher than that of Azzalini and Bowman. And the empirical power of
modified pseudolikelihood ratio test statistics based on CERES(k) is highest.

In conclusion, the modified pseudolikelihood ratio test statistics based on CERES(k) is most
sensitive to non-linearity. Thus we suggest the modified pseudolikelihood ratio test statistics
based on CERES(k) to check the linearity of selected covariates in regression diagnostics.

Table 4.1 Comparing empirical power of the modified pseudolikehood ratio test statistics

alpha=0.1
n a RES PRES APRES CERES(L) | CERES(k)
1.94 0.247 0.346 0.593 0.809 0.951
10 9.68 0.484 0.319 0.562 0.802 0.936
19.36 0.646 0.327 0.578 0.799 0.929
96.82 0.853 0.340 0.576 0.805 0.938
1.94 0.296 0.420 0.648 0.864 0.990
15 9.68 0.653 0.412 0.636 0.855 0.980
19.36 0.784 0.430 0.670 0.865 0.987
96.82 0.956 0.428 0.659 0.876 0.981
1.94 0.357 0.513 0.740 0.931 0.998
20 9,68 0.767 0.510 0.742 0.929 0.999
19.36 0.877 0.473 0.746 0.941 0.997
96.82 0.979 0.507 0.745 0.937 0,998
1.94 0.483 0.612 0.813 0.968 1.000
5 9.68 0.866 0.612 0.816 0.958 1.000
19,36 0.959 0.603 0.759 0962 ¢ 0.999
96.82 0.997 0.609 0.799 0967 i 1.000
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alpha=0.05
n a RES PRES APRES CERES(L) | CERES(k)
1.94 0.183 0.263 0.507 0.763 0.924
10 9.68 0.407 0.247 0.489 0.747 0.910
19.36 0.583 0.241 0.496 0.732 0.898
96.82 0.828 0.254 0.491 0.753 0.910
1.94 0.203 0.316 0.571 0.819 0.983
15 9,68 0.561 0.316 0.560 0.798 0.970
19.36 0.730 0.320 0.597 0.820 0.978
96.82 0.942 0.328 0.581 0.823 0.970
1.94 0.248 0.402 0.643 0.907 0.997
20 9.68 0.693 0.406 0.642 0.894 0.994
19.36 0.843 0.371 0.645 0.905 0.995
96.82 0.972 0.408 0.660 0.909 0.996
1.94 0.362 0.480 0.728 0.944 0.998
9% 9.68 0.792 0.499 0.726 0.930 1.000
19.36 0.924 0.498 0.719 0.936 0.997
96.32 0.955 0.430 0.729 0.948 1.000
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