Approximate Maximum Likelihood Estimation for the Three-Parameter Weibull Distribution

  • Kang, S.B. (Department of Statistics and Institute of Natural Science, Yeungnam University) ;
  • Cho, Y.S. (Department of Statistics, Yeungnam University) ;
  • Choi, S.H. (Department of Statistics, Yeungnam University)
  • Published : 2001.04.01

Abstract

We obtain the approximate maximum likelihood estimators (AMLEs) for the scale and location parameters $\theta$ and $\mu$ in the three-parameter Weibull distribution based on Type-II censored samples. We also compare the AMLEs with the modified maximum likelihood estimators (MMLEs) in the sense of the mean squared error (MSE) based on complete sample.

Keywords

References

  1. IEEE Transactions on Reliability v.38 Approximate MLE of the scale parameter of the Rayleigh distribution with censoring Balakrishnan,N.
  2. Jouranl of Statistical Computation and Simulation v.32 Approximate maximum likelihood estimation of the mean and standard deviation of the normal distribution based on Type-Ⅱ censored samples Balakrishnan,N.
  3. Order Statistics and Inference:Estimation Methods Balakrishnan,N.;Cohen,A.C.
  4. Journal of the American Statistical Association v.75 Estimation in the three-parameter lognomal distribution Cohen,A.C.;Whitten,B.J.
  5. Communications in Statistics, Simulation and Computation v.11 no.2 Modified moment and maximum likelihood estimators for parameters of the three-parameter gamma distribution Cohen,A.C.;Whitten,B.J.
  6. Communications in Statistics:Theory and Methods v.11 no.23 Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution Cohen,A.C.;Whitten,B.J.
  7. Journal of Quality Technology v.17 Modified moment estimation for the three-parameter inverse Gaussian distribution Cohen,A.C.;Whitten,B.J.
  8. Journal of the Korean Mathematical Society v.33 no.1 Approximate MLE for the scale parameter of the double exponential distribution based on Type-Ⅱ censoring Kang,S.B.
  9. Far East Journal of Theoretical Statistics v.2 no.2 Approximate MLE for doubly truncated normal distribution Kang,S.B.;Cho,Y.S.
  10. Journal of Information & Optimization Sciences v.22 no.1 Estimation of the shape parameter for the three-parameter Weibull distribution Kang,S.B.;Cho,Y.S.;Choi,S.H.
  11. The Korean Communications in Statistics v.5 no.1 Approximate MLE for Rayleigh distribution in singly right censored samples Woo,J.S.;Kang,S.B.;Cho,Y.S.;Jeon,S.C.