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Development of an Item Selection Method for
Test-Construction by using a Relationship Structure among
Abilities?)

Sung Ho Kim?), Mi Sook Jeong3) and Jung Ran Kim?%

Abstract

When designing a test set, we need to consider constraints on items that are deemed
important by item developers or test specialists. The constraints are essentially on the
components of the test domain or abilities relevant to a given test set. And so if the
test domain could be represented in a more refined form, test construction would be
made in a more efficient way. We assume that relationships among task abilities are
representable by a causal model and that the item response theory (IRT) is not fully
available for them. In such a case we can not apply traditional item selection methods
that are based on the IRT. In this paper, we use entropy as an uncertainty measure
for making inferences on task abilities and developed an optimal item selection
algorithm which reduces most the entropy of task abilities when items are selected
from an item pool.

Keywords @ Ability states; Bayes network; Conditional independence; Conditional probability;
Entropy; Item response theory; Test information

1. Introduction

In recent years test construction paradigms have been proposed under IRT framework, where
items are selected in such a way that some aspect of the items to be selected is optimized
subject to constraints on other aspects. The constraints may incorporate item information
function and characteristics of items, such as contents or types, that are deemed important by
test developers or subject experts. Literature in this line of work includes van der Linden
(1987), van der Linden and Boekkooi-Timminga (1989), Ackerman (1989), Stocking and
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Swanson (1993), and Swanson and Stocking (1993).

Tests are usually evaluated in two perspectives, reliability and validity. No matter what the
purposes of a test are, it is desirable that the two concepts be substantially well tuned to the
purposes of the test. While the notion of test reliability is quite technical, test validity has been
described from a variety of aspects. It is noteworthy that Cronbach (1980), Dunnette and
Borman (1979), Guion (1977, 1978), Messick(1975, 1994), and Tenopyr (1977) among others
stated forcefully to the effect that the different types of validity, including content, criterion,
and construct validities, are inseparable in essense and that all types of validation are one and,
in a sense, are rooted in construct validation.

Embretson (1983, 1985) considered a conceptual model for test design that shows a
relationship of the cognitive features of items such as task abilities and strategies to construct
validity. The model includes multicomponent latent trait models (MLTMs) which provide
estimates of the cognitive demands in each item and specify the relationship of cognitive
demands to the cognitive abilities that are reflected in item solving. (p. 195, Embretson, 1985)
The relationship among the task abilities and the item scores involved in an MLTM is
representable by a graph of nodes (or vertices) and edges, where a node represents a variable
and a pair of nodes are connected by an edge if the variables corresponding to the nodes are
associated. The relationship among task abilities, whether they are knowledge stores, strategies,
or problem-solving abilities, are pre-requisite in general, and the relationship between an item
and its relevant abilities is of cause-effect type. Thus, the relationship among abilities and
items can be represented via directed acyclic graph (DAG). In educational testing, such a graph
was named Bayesian Inference Network (BIN) in Mislevy (1994), which is a mixture of Bayes
Network (Pearl, 1983) and inference. Bayes Network is another name of DAG, which is used
to represent the cause-effect relation among variables, and “inference” is made on abilities
and/or item scores given evidence on a set of variables involved in a given graph or model.

A generalized version of the MLTM is a recursive model (Wermuth and Lauritzen, 1983).
The joint probability for a recursive model can be expressed in a factorized form, where each
factor i1s a marginal or conditional probability of a variable involved in the model conditional on
the conditioning variables of the variable. The model structure of any recursive model is
representable by a DAG. The pre-requisite or its equivalent relationship among task abilities
and the cause-effect relationship between a set of items and a set of their item-relevant
abilities can be depicted in a BIN. Arrows go from the node of a lower-level ability to the
node of a higher-level one, and arrows also go to the node of an item from those of the
item~relevant abilities.

If a BIN of test items and item-relevant abilities well fits to a test data set, it is an
evidence supporting the construct validity of the test where the construct is substantiated in
the BIN. Although the test construct is well validated, that is, the structure of the BIN is well
supported by data, the test may yet have to undergo another evaluation in “inference
accuracy.” Accuracy in making inferences for task abilities has much to do with test reliability
whether the latter is defined under classical test theory or item response theory. We aim in
this paper to explore item selection rules for an optimal test design. “Optimality” is in the
sense that a prediction for ability states of a test-taker by a test set is more accurate than
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another test-set.

This paper consists of 6 sections. In section 2, we briefly consider inference making under
the IRT frame, and then an uncertainty measure entropy is introduced as a test information
measure along with some of its basic properties. Section 3 presents a theoretic result to the
effect that one can select, under a certain condition, a most informative item using entropy as
an uncertainty measure. In section 4, comparisons are made by simulation among items some
of which tap one ability and the others tapping two or three abilities. In the simulation study,
we considered a variety of relationships among ability variables. Section 5 presents an
illustration of optimal item selection where the relationships among abilities are represented via
a causal model, and section 6 concludes the paper.

2. Inference Making and Entropy as a Test Information Measure

One of the major purposes of educational testing is making inferences on an interested set of
attributes of test takers. Under the IRT, the precision is represented in terms of X&), the
information function, or the conditional error variance of 6, the person parameter, and the
precision varies across 6.

In adaptive testing under a framework of IRT, items are selected under a certain condition so
that predictions on 6 may be made as accurate as possible. The condition is usually provided

by test specialists in the form of item or test specifications (Swanson and Stocking, 1993).
Whether a test is adaptive or conventional, items are selected to attain the same goal that
inferences are made with as small error as possible. If making inferences on & under an IRT
frame was a main goal of a test, then the test should be designed so that the test information
be as large as possible. But if we were ambitious to make inferences on something far more

refined than @ such as task abilities that are required in solving the items of a test set, we
might need some other information measure instead of the item or test information function.

The Shannon entropy (or entropy for short) of X can be interpreted as representing the
amount of uncertainty that exists in the value of X. We denote by H(Y| X) the entropy of
Y conditional on X .

The theorem below follows immediately from the definition of entropy, and see section 4.4 of
Whittaker(1990) for its proof.

Theorem 2.1 Let X and Y denote two distinct random vectors of item scores. Then we have
HA| X)=H(A| X, 7).
This theorem is applied to the situation where random variables X and Y are conditionaly
independent given Z, ie.,
X1Y|Z. 2.1

Corollary 2.1 Suppose that random variables X,Y, and Z satisfy expression (2.1). Then, it
holds that

H(Y| X)=H(Y| 2).
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Proof: The proof is immediate from Theorem 2.1 and the condition of the corollary. &
Corollary 2.1 states that in predicting for Y, Z is more informative than X.

3. Entropy and Item Selection

Under IRT, the test information function of a test set is expressed as the sum of the item
information functions of the items in the test set. The linear relation between item information
and test information makes the test construction quite feasible. But if we intend to predict a
more refined version of 6, ie., the states of the abilities required in a test, we need to
consider both the prediction accuracy and the set of abilities that are tapped by each item.

Suppose we want to construct a test set of two items only to make inferences on three task

abilities. Denote the states of abilities 1, 2, and 3 by A, A, and Aj and suppose that they

are related as in the figure below, that is, A, and A, are associated each other and

Here our problem is what items to select. There are as many as 72 possible test designs,

independent of A s.

that is, 7 possible ways of ability tapping for each item. To name a few of them, (1) item 1
tapping A, and the other tapping the rest; (2) item 1 tapping A, and A5 and the other A,
and Aj; (3) item 1 tapping A and A, and the other A ;. In designs 1 and 2, item 2 taps
two abilities that are independent each other while it is not the case for design 3. Is there any
criterion by which one can evaluate test designs with respect to accuracy in making
inferences? We will explore part of this issue in this section.
By the property of entropy, we have
H(X)—H(X|A)zH(Y)—H(Y| A).

In practice, H(X)— H(X | A) is easier to compute than H(A)— H(A | X), because to obtain
H(A| X) we need to compute the joint conditional probability of A given X while
H(X | A) is obtained, assuming that the test consists of I items, as

HX| A)= 3 HX | A),
where X, is the item score variable of item 2 This equation is possible since X; is
conditionally independent of X ; j#i, given A. So we will use H(X)— H(X| A) instead of
H(A)— H(A | X) in comparing the uncertainty levels between tests.
We will denote the number of the task abilities that are required for a given test item by
K and by A the vector of the states of the K abilities. We will call by a Ak-tapping item
an item that taps k& task abilities, that is, an item which is causally related with the &

abilities. For notational convenience, We will write P, and Pu{(/) for P(A,=1) and
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P(A ,=11A;=1)), respectively, and write X (;..,y for the item score variable of the item that
taps abilities 7,-:-,k and A ;., for (A;,--,Ar). We define H;., by
H;y=HX Gp—HXGnlA, Ay for 1<;<K.
We will also use CP;.4(a) for P(X jn=11(A;,,Ap=a).
The following result is immediate from the definition of entropy.
Theorem 3.1 Suppose that the three random vectors X, Y, and Z satisfy the conditional
independence,
XL1Z|Y.
Then it follows that
HX,Y)-HX, Y| 2)=HY)-H(Y| 2).

Proof: By the conditional independence, we have
HX Y| 2)=HY|2)+HX|Y).
So follows the desired result. -
Since the conditional probability of X (.., is influenced by A ;., only, we can reexpress
H;., by Theorem 3.1, as
Hi,=HX ;.»)—HX .pnl Azp.
The theorem is also applied in deriving a rule to select an item out of a set of 1-tapping
items.
Theorem 3.2 Suppose that K=2 and that items 1 and 2 tap abilities 1 and 2, respectively.
Suppose also that A; and X ; 1=1,2, are binary, each taking on 0 or 1, and that

PX,=11A,=D=PX,=1|A,=1) (3.1)
and
X ,=11A,=D+PX;=1]A,=0=1. (3.2)
Then we have the following:
H,=2H, ifand only if H(A ))=H(A,), (3.3)

where equality is a simultaneous occurrence on both sides.
Proof: From (3.1) and (3.2) follows that, for i=1,2,
H(Xz[Azz ]-)=H(Xz| A1=0)-

So we have
HXG | AD=HX, 1 AD = Z(KA =0~ PA,=)HX,| A=)

- H(Xl l A1= 1) go(P(Al=a)_P(A2=a))
= ( (3.4)
This result yields

H,— Hy=H(X )~ H(X)). 35)
Denote P(X,=1}1A;=1) by @ and P(A,=1) by P, . Then, from (3.1) and (3.2), we
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have, for i=1,2,
AX,=1)=1—a+P,; - 2a—1).
P(X ;=1) is linear in P, and equal to 0.5 when P ;=0.5. Thus it follows that
|[P(X,=1)—0.5=|P(X,=1)-0.5l
if and only if
|P,—0.5/=|P,—0.5[,

where equality holds only simultaneously. This implies the result (3.3) by (3.5), since the
function

Ax)=xlogx+(1—x)log(l—x), 0<x<1,
is convex and symmetric about x=0.5 .

According to Theorem 3.2, when all the variables are binary and all the items are 1-tapping,
it is desirable to tap the ability node whose marginal entropy is the largest provided that the
conditions (3.1) and (3.2) are satisfied for all the items. But the theorem can not be extended
to multi~tapping items. For instance, consider a 2-tapping situation. For item 1 which taps a

pair of abilities A, and A, we can imagine an extended version of (3.2) such as
PX,=1A+A=)+PX =1|A,=a,,Ay=a,)=1, (3.6)
for 0<a;+a,<1. Suppose that item 2 taps another pair of abilities, A‘I and A, that
PX =1 A +A,=2)=PX,=1]|A,+A,=2),
and that an analogy of (3.6) holds for X, Then we can easily see that
HX,|A,A)—HX, | A,A)=0
which is an analogy to (3.4). But it is not guaranteed that
(H(X ) — HX ))H(A \, A ) — H(A |, Ap)=0,
because H(A ,, A,) ranges over a non-empty interval for the set of P(A, A,) values that

satisfy

PX,=1) = 1-PA,=1,A,=1)(1-PAX,=1|A;=1,A,=1))
+PA;=1,A,=DPX,=11A;=1,A,=1).

Therefore, Theorem 3.2 can not be extended to multi-tapping situations. However, if the
marginals of X are available, there is yet a hope.
Theorem 3.3 Consider a test set which requires at least t task abilities and suppose that
items 1 and 2 are t-tapping and that item i (i=1,2) taps the set A? of ability variables.
Suppose also that X’s and A’s are all binary, éach taking on 0 or 1, and that
PX,=11A%Y is a vector of ') =P(X,=1 | A® is a vector of 1's) (37
and

P(X,=1|AY is a vector of ')+ P(X,=11AP=0)=1, (38)

for every t-vector a whose components are not all 1. Then we have the following:
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Proof: The proof is a straightforward application of the argument that leads to (3.4). O

If an item is solvable when and only when the states of all the abilities that are tapped by
the item are good enough for the item, we will call the item all-or-fail item. If all the
item-relevant abilities are in good states, we will say that they are in a perfect state;
otherwise, in an imperfect state. The item whose probabilities of correct response are the same
across the imperfect states of the item-relevant abilities is of all-or-fail type.

The item which satisfies (3.2) or (3.8) is not unusual in the real world. For instance, if it is

2-tapping, we can think of the case that CP5(11)=0.85 and CP,(00)= CP,(01)=
CP5(10)=0.15. When it comes to 1-tapping, the conditions of Theorem 3.2 may often be

satisfied, in which case we can apply this theorem in selecting a most informative item
provided that the uncertainty level for each ability is available. If the marginals of item scores
are available, then Theorem 3.3 is useful for item-selection.

If items are not of all-or-fail type, preference between items is subject to the joint
probability distribution of A and the conditional distribution of X given A. We will explore
this for some situations where items tap as many as 3 abilities.

4. Ttem Selection In 3 Simple Situations where K<3

In this section, we will consider the following three situations:
Situation 1: K=2, and 1-tapping and 2-tapping will be compared.
Situation 2. K=3 and A,;LA;| A, Cmparisons will be made on the 2-tappings on the
A|— A, pair and on the A;— A; pair.
Situation 3: K=3 and (Py5(0,0), P3;5(0,1), P32(1,0), P31(1,1))=(0.1,0.3,0.3,0.9). The
preferences among the three 1-tappings, three 2-tappings, and a 3-tapping will be ranked.
ituation 1
Preference between 1-tapping item and 2-tapping item is subject to the probability distribution
of A and the conditional distribution of X given A as illustrated in Table 4.1. The table is
obtained under the condition that (CH0), CP(1))=(0.15,0.85) for a l-tapping item and
(CP(0,0), CP(0,1),CF(1,0),CP(1,1))=(0.1,0.3,0.3,0.9) for a 2-tapping item. According to
the table, the item that taps A ; was most preferable under Model 1, as for Model 2 it was
the item that taps A, and it was the item that taps both A; and A, as for Model 3.
To get an insight into the preferences between 1-tapping and 2-tapping, we obtained
rank-averages between the tappings with the same conditional probabilities of X as for Table
4.1. Table 4.2 shows the rank-averages for each of P(A,=1)=0.1(0.1)0.9, where the

averages were taken over the 45 joint probabilities of A, and A, , Py (0)=0.1(0.1)0.9
and Pq(1)= Py (0)(0.1)0.9. According to the table, l-tapping was most preferable on
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average when P,=0.1(0.1)0.6,0.9. When P,=0.8, H, was very close to H . A possible

Table 4.1: Values of H(X)— H(X | A) in situation 1. (CP0), CP(1))=(0.15,0.85) and
(CP,(0,0), CP,(0,1), CP 4(1,0), CP ,(1,1))=(0.1,0.3,0.3,0.9).

Model P, Py(0) Py(l) H; H, Hyp
1 0.70 0.20 020 0231 0179 0136
2 0.70 0.30 040 0231 0254 0211
3 0.70 0.30 090 0231 0222 028

explanation of this is that when P, is as small as 0.1 or 0.2 or as large as 0.8 or 0.9, tapping
A5 only may be most informative, since the uncertainty level for the state of A is relatively
low. In the same context, we could understand that H, was the largest when
P1=0.4,0.5,0.6.

The ranking among H |, H, and H,; is subject to the joint distribution of A, and A,
and the conditional probability distribution of X given A. We will see below what happens

when A, and A, become more associated each other. For notational convenience, let
HAl,AZ(X | al,a2)=H(X| A1= al,Ajz:aZ).

Assuming that A and A, are binary, we have

HX| A, A= $=OHA,,A3(X lay,a)P(a)Pyla) (1= Py (a) ™"

Hence
OH(X|ALA,y B
3P 5,(0) =P (0)(Ha, a,(X10,1)—Ha, 4,(X10,0)
and
JH(X|ALA) )
) D HA 4 (X TLD=Ha 4 (X 1,00,

Provided that
Ha a(X10,0<CHA,4,(X10,1) and Ha, a (X1 1L,0O>H 4 4,(X|1,1), 4.1)
we have that

OH(X| A, A JH(X| A,A)
8P2|1(0) 8P2|1(1)

That is, for a given H(X (), Hp» increases under condition (4.1) as A, and A, become

>0 and <0.

more assoclated each other. Condition (4.1) seems very likely in real world. It is not unusual
that CP(0,0) < 0.5 ¢ CP(1,1) and that min{| CP(0,0)—0.51, | CP(1,1)—0.5]} >
max{ | CP(a,a3;)—0.5|;a;+a,=1} which lead to condition (4.1).

Situation 2

In this situation, We  considered only Z2-tapping items to compare the uncertainty level,
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H(X)— H(X| A), between tapping both of A, and A, and tapping both of A, and Aj,

but the preference is subject to the joint distribution of A and the conditional distribution of
X given A as illustrated in Table 4.3.

Table 4.2: Rank-averages of H,, H, and H, for each of P,=0.1(0.1)0.9.

Py H, H, Hy
0.10 1.689 2.956 1.333
0.20 1.933 2.733 1.311
0.30 20111 2.444 1.422
0.40 2.356 1.933 1.644
0.50 2.622 1.467 1.822
0.60 2.222 1.711 2.000
0.70 1.689 2.022 2.267
0.80 1.244 2.333 2.378
0.90 1.022 2.600 2.356

Table 4.3: Values of H(X)— H(X | A) in situation 2. For j=2,3,
(CPU(O,O), CPU(O, 1), CP1,‘(1,0), CPU(]., 1))’—' (0.1, 0.2,0.2,0.9).

Model P, Py(0) Py(1) Pap(0) Pap(l) Hy, Hy
1 0.7 0.35 0.65 0.15 0.55 0.31 0.25
2 0.7 0.35 0.95 0.05 0.75 0.30 0.32

The proportions of the cases that tapping both of A; and A, is preferable to tapping A;
and Aj; for a set of distributions of A are as follows, where it is assumed that
CP ;= CPx. As for
the joint distributions of A, we considered P,=0.1(0.1)0.9, P, (0)=0.05(0.1)0.45,
Py (1)=0.55(0.1)0.95, P3,(0)=0.05(0.1)0.45, and P3,(1)=10.55(0.1)0.95. What we found
is that the preference of tapping the A [;— A, pair is around or above the proportion 0.9
except the four distributions of A; one when P;=0.1, another when P,;=10.8, and the rest
two when P;=0.9.

Situation 3

In this situation, it is assumed that A j; is causally influenced by both A, and A, while
A and A, may or may not be associated each other. Thus, in terms of abilities, A, and
A, are assumed to be prerequisite to A3 In light of the above two situations, we may

anticipate that as the three abilities are more associated each other, 3-tapping may be more
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preferable. But the preference is, as in the above situations, subject to the joint distribution of
A and the conditional distribution of X given A as indicated in Table 4.4.
Table 4.4: Rank averages of H(X)— H(X | A) among the 7 items, X ), X @, X @)

X a» X 3, X (3, and X (193- The conditional probabilities for the items are assigned

in four different settings:

Setting 1. CPy= CP,=CP;, CP(0)=0.15, CP(1)=0.85; CP;= CPy= CP,
(CP2(0,0), CP13(0,1), CP,(1,0), CP5(1,1))=(0.1,0.3,0.3,0.9); (CP 15(0,0,0),
CP15(0,0,1), CP15(0,1,0), CP15(0,1,1), CP153(1,0,0), CP15(1,0,1), CP»(1,1,0),
CP5%(1,1,1))=(0.1,0.2,0.2,0.4,0.2,0.4,0.4,0.95).

Setting 2. Same as Setting 1 except that CP(0)=0.1 and CP,(1)=0.9.

Setting 3. Same as Setting 1 except that CP»(1,1,1)=0.9.

Setting 4. Same as Setting 2 except that CP3(1,1,1)=0.9.

SEttmg Hl H2 H3 H12 H23 H13 H123
1 2.88 3.60 441 2.10 6.05 4.38 452
2 4.59 5.38 6.35 1.26 429 2.88 3.20
3 3.08 3.85 4.69 2.61 6.26 4.84 2.62
4 4.68 551 6.37 1.77 4.50 3.33 1.80

Table 4.4 is obtained under the joint distribution of A and X as specified below:

P,=0.1(0.1)0.9, P»(0)=0.1(0.1)0.9, P(1)= Py, (0)(0.1)0.9 (4.2)
and Pgy is fixed as
(P312(0,0), Py(0,1), Pyp(1,0), Pyp(1,1))=1(0.1,0.3,0.3,0.9). (4.3)

So 405 different joint distributions are considered.

We compared H(X)— H(X | A) among the three 1l-tapping items, the three 2-tapping
items, and one 3-tapping item, where the conditional probabilities are assigned in 4 different
settings (see Table 4.4). The values of H(X)— H(X | A) are ranked in ascending order for
each joint distribution of A and the ranks are averaged over the 405 joint distributions of A
for each item.

According to Table 4.4, tapping both A, and A, appeared to be most preferable on
average under settings 1 and 3 and under settings 2 and 4 tapping only A; was most
preferable on average. It is worth noting that the rank of H iy dropped, when the conditional
probability CP1x(1,1,1) was lowered from 0.95 to 0.9, by the amount of 1.9 between settings

1 and 3 and by the amount of 1.4 between settings 2 and 4. The small change (0.05) in the
conditional probability made the 3-tapping far less informative.

It is interesting to note that among the ranks of the 1-tapping items, the rank of Hj; was

the highest on average and that among the ranks of the 2-tapping items, the rank of Ho was
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the highest on average. The conditional probabilities for the 1-tapping items satisfy (3.2).
Therefore, the result for the three 1-tapping items implies, according to Theorem 3.2, that A ;

is most uncertain on average. Also note that when ( CP(0), CP (1)) is switched from (0.15,

0.85) to (0.1, 0.9) the ranks of the 1-tapping items were all higher than the 2-tapping or
3-tapping items.

As for the 2-tapping items, the conditional probabilities do not satisfy (3.8). There is no
clear—cut, theory-based explanation for this. We can, however, say that, under the set-up for
Table 44, tapping both of A, and A, is most informative among the 2-tapping items.

H(X)— H(X]A) may be regarded as a function of the joint distribution of A and the
conditional distribution of X given A. Since the joint distribution of A is of 7 cell

probabilities, H(X)— H(X|A) is a function of at least 7 factors. After a simple algebra, we
can see that any analysis of the function with respect to the factors may lead us to nowhere

Table 45: Rank averages for each of P,=0.1(0.1)0.9.
(a) Setting 1

Py H, Hy Hj, Hy Hy, Hy Hyn
0.1 2600 6400 5778 1533 5622 3311 2733
0.2 3289 5667 5483 1422 5778 3489 2844
0.3 3.822 4489 4689 1644 5867 4.067 3400
0.4 41% 3222 3711 1978 5867 4867 4178
0.5 4533 2111 2978 2222 6.044 5156 4733
0.6 3111 2089 3733 2422 6156 5178 5267
0.7 1978 2244 4111 2667 6289 5022 564
0.8 1356 2756 4378 2644 6378 4556 5889
09 1044 3444 4844 2400 6489 3800 5956

(b) Setting 2

P, H, H, H; Hyp Hy; Hy  Hiy
01 4267 6600 6.311 1200 4778 2622 2200
0.2 4844 6267 6267 1089 4400 2822 228
0.3 5511 587 6.08 1.111 4044 2933 2400
0.4 6.222 5311 5933 1156 3778 2911 2622
05 6.822 4600 5667 1156 3778 2867 2911
0.6 5778 4622 6556 1133 3822 2733 3333
0.7 4400 4689 6844 1.133 4378 2533 4.000
0.8 2267 5000 6800 1422 4733 3222 4533
0.9 1.156 5467 6689 195 4911 3267 4533

unless the conditions of Theorem 3.3 are satisfied. It sounds quite reasonable to expect that
preference of 3-tapping may increase as the 3 ability variables become more highly associated
among themselves, which was observed under the settings for Table 4.4. But it is not always
the case. We can see a counter-example to this expectation when

(P312(0,0), Py1p(0, 1), Pya(1,0), Paypa(1,1))=1(0.1,0.2,0.1,0.6)
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and when the CPy under Setting 1 of Table 44 is replaced by (0.1,0.2,0.3,0.4,0.2,0.4,

0.6,0.95). We will thus look into a more detailed picture of Table 4.4,
Table 4.5 lists the rank-averages for each of P;=0.1(0.1)0.9. Under setting 1 (see panel
a), the 1-tapping of ability 2 was most preferable on average when P ;=0.1; on the other

hand, the 2-tapping of abilitles 2 and 3 was most preferable on average when
P;=0.2(0.10.9. But when CP, switched from setting 1 to setting 2, the l-tapping items
only were preferable on average. When P,=0.1,0.2,0.3, tapping ability 2 or 3 was most
preferable, and when P;=0.6(0.1)0.9, tapping ability 3 was most preferable on average.
Tapping ability 1 was most preferable on average when P,;=0.4,0.5. The rank-averages
among the l-tapping items are a reflection of Theorem 3.2.

We have considered BINs where abilities are connected by directed edges. The edges are
directed not to reflect the cognitive sequence of problem solving activity but to reflect the
causal or prerequisite relationship among the variables. In this paper, the items are limited as
tapping up to 3 abilities, and the above results are recapitulated as follows:

(i) If three abilites A,, A, and A are related so that A, 1LA3;| A, , then items that tap

the pair of A and A are preferred the least in general among the 2-tapping items for
the three abilities.

(ii) The item preference (or H(X)— H(X| A)) increases as the probability P(X=11 all
the A’s are equal to 1) increases or the probability P(X=1] all the A’s are equal to
0) decreases.

(iii) As a pair of abilities become more positively associated, the preference for the item that
taps the ability pair increases; the same is expected to hold for 3-tapping items.

(iv) Preference among l-tapping items is, under the condition of Theorem 3.2, determined by
the amounts of uncertainty of the ability variables.

(v) In situation 3, where 1-, 2-, and 3-tappings are compared, the 1-tapping was most
preferred when

(CP,(0), CP(1))=(0.1,0.9) (44)

provided that the other conditional probabilities are as in setting 1 of Table 4.4.

Statement (v) suggests that when 1-tapping items are well developed and satisfy (4.4), we
may select them based on the amounts of uncertainty of ability variables. That we select the
item which taps the ability whose uncertainty is the highest is quite natural from the
perspective of decision theory where the aim is to derive a decision scheme to minimize the

amount of uncertainty of a given predicted object.

5. An Illustration of Optimal Item Selection

In this section we will demonstrate an optimal item selection for an artificial test set where
14 task abilities are required and which consists of 10 items. Suppose that an item pool is
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ready for the test set and that the prerequisite relationships among the 14 abilities are given as
in Figure 5.1. The ability states are assumed as binary, O for a poor state and 1 for a good or
perfect state. The conditional probabilities of an ability or an item are assigned in the same
manner as in section 4. The item pool contains 183 items, where items tap 1 through 3 abilities
in various forms. Some items tap abilities that are closely related and some others tap abilities
that are slightly related or not.

The selection result is summarized Table 5.1. We can see in the table that the results (i)
through (v) as listed near the end of section 4 are reflected pretty much. According to the
table, an item tapping ability 8 is selected initially as most informative, and ability 7 was
tapped next. We can see that the abilities are tapped from near the center toward the boundary
of the graph in Figure 5.1.

The selected items would vary across item pools and the relationships among the abilities.
So there is no telling which ability or abilities be examined first by an item or which next.
However, a general trend is that abilities near the middle of a graph are the first selection

Figure 5.1 A causal model of 14 abilities for an artificial test that is used in section 5.

Table 5.1 List of items that are selected optimally for the 14 abilities as in Figure 5.1

selection item abilities uncertainty
sequence no reduction

1 8 8 0.3627D+00
2 7 7 0.2993D+00
3 66 1 2 4 0.2837D+00
4 13 13 0.2630D+00
5 12 12 0.2452D+00
6 10 10 0.2254D+00
7 3 3 0.2172D+00
8 11 11 0.2054D+00
9 41 5 9 0.1380D+00

2 2 0.1800D+00

[—
o
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under normal circumstances that the difficulty levels of those abilities are around the medium.
The last column in the table shows the reduced amount of uncertainty for making inferences
on ability states based on the selected items. The amount is decreasing in the table but it is
not necessarily the case in general.

6. Concluding Remarks

An ultimate goal of test design is to produce a test set by which we may predict the states
of the test-relevant abilities with the least possible error, ie., with the smallest possible
uncertainty remaining. In this paper, we have explored some fundamentals towards the goal
with regard to a fine structure of abilities by considering the graphical structure of abilities and
item scores. A more general algorithm for optimal item selection from an item pool can be a
straightforward extension of the results of this paper, where the extension may cover various
types of items including open ended problems.

It is meaningless comparing a test set that is obtained under the IRT frame with a test set
that is obtained under a causal model frame, since the IRT frame is a particular form of the
causal model frame. When the relationships among a set of task abilities are represented via a
causal model, the item information function under the IRT frame may lead us nowhere.

The computer program for item selection is written in Fortran and it serves well for the
multiple choice items.
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