The Korean Communications
in Statistics Vol. 8, No. 1, 2001
pp. 87-9%

Empirical Bayes Estimation of the Binomial and Normal
Parameters

Jee Chang Hong!) and Inha Jung?

Abstract

We consider the empirical Bayes estimation problems with the binomial and normal
components when the prior distributions are unknown but are assumed to be in
certain families. There may be the families of all distributions on the parameter space
or subfamilies such as the parametric families of conjugate priors. We treat both
cases and establish the asymptotic optimality for the corresponding decision
procedures.
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1. Introduction

1.1. Bayes decision problem

Consider a statistical decision problem(called a component problem hereafter) with the

following elements :

(1) A parameter space ¢, with a generic element 6. @ is the “state of nature” which is
unknown to us.

(2) An action space A, with generic element a.

(3) A loss function L on AX® to [0,) with L(a,8) representing the loss of taking
action a when @ is the true state of nature.

(4) A prior distribution G on @.
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(5) A random variable X taking values in a space R, and for a given realization & of a

random variable having distribution G, X has a specified probability density f,( -)

with respect to a o-finite measure g on a o-field in R.

The statistical decision problem is to choose a decision function ¢:RX—A. Assuming that

L{# - ), 0 is a measurable function on R X ®, the average(or expected) loss function of ¢ is

given by
R(t,0)= [ L(Kx), ) o(x)du(x). (LD
The overall expected loss with 8 ~ G is
R(t,G)= [ R(t,6)dG(6) (12)
called the Bayes risk of f relative to G. Thus,
R(tG) = [ 6 6(#x), x)du(x), (1.3
where
bo(a, 0= [ La, 0)f 4(x)dG(6). (14)
Let #; : R — A be defined by
¢ (Hx),x)=min ,c4 ¢ (a, x). (1.5)
Then, for any decision function ¢,
R(to,G)= [ min wes ¢ o(a, x)du(x) < R(t, G) 1.6)
so that, defining
R(G)=R(te,G)= | ¢ o(te(x),0du(x), (17
we have
R(G)= min , R(¢, G). (1.8)

Any decision function ¢ satisfying (1.5) minimizes the Bayes risk relative to G, and called
a Bayes decision function relative to G. The functional R(G) defined by (1.7) is called the
Bayes envelope functional of G(Berger, 1980). We are mainly concermned with the estimation
problem under squared error loss defined by L(8,a)=(6—a)? A Bayes estimate ¢ c(x) is a

minimizer of ¢ ¢(a,x) given by (1.4) over all a= A, for each x= R, that is,
J (0=t o(x)dG(0) = min s s [ (6= )7 f2)dG(0).

It is well-known that #;(x) is given by the posterior mean of 4, ie.,
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te(x)=E(8|x). (1.9)
1.2. Empirical Bayes decision problem

When G is known, the Bayves decision function ¢, defined by (1.5) is the most idealistic

one. Unfortunately, G is not completely known in most cases. Robbins{1955, 1964) introduced
the empirical Bayes approach to statistical decision problem which is applicable when we are
faced with an independent sequence of Bayes decision problems having similar structure.
Suppose now that the component decision problem described in Section 1.1 occurs repeatedly

and independently with the same unknown prior distribution G in each repetition of the

decision problem. That is, let (8;,X),-,(8x Xn),=* be a sequence of independent,
identically distribution(i.i.d.) random vectors where @y are iid. G and where Xy has density
fa,(+) with respect to g given 6y Xi,--,Xy, - are observable whereas @, -,8y,
are not. Viewing this setup at stage (N+1) with G unknown, we have already accumulated
the X, -, Xy and X 4|, and we want to make a decision about @ y+; under the loss L.

Since G is assumed to be unknown, and since X,,-:,Xy is a random sample from the

population with density
folx)= [ fo(x)dG(6) (1.10)

with respect to g, it is reasonable to expect that X, -, Xx do contain some information about
G. Eliciting this information about G from Xj,-, Xy and then using it to define

t ) =tn(Xy, o X s ) (1.1D)
a decision rule for use in the (N+1)th decision problem to decide about 6 y,;, we incur an

expected loss at stage (N+1) given by
RXT,G = E[R(ty(+),0)]
= [ E¢a(ty(x), )du(x) (112)
= [ [, EIL(ty(2), 01 fx)dG(0)du(x)

with T={ty}. The search for rules {#y} which are asymptotical optimal relative to G for
every distribution G within a certain class has taken basically two tracks. The first track is

to use values X|,'-, Xy to form an estimate of G, call it @N, and then let ¢y be a Bayes
decision rule with respect to CN, ie., let In=1 g, . The second track is to estimate the

form of the Bayes decision rule directly without estimating G first.
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Let € be a class of priors on ® to which G is expected to belong. The class 8 may be
the class of all priors on @ or a subclass of priors on @. If € is the class of all priors, we do
not assume any functional form of the unknown prior G, and the corresponding empirical
Bayes problem is called nonparametric empirical Bayes. When G is assumed to be in the

conjugate family, then ® is a parametric subclass of all priors on . Empirical Bayes
problem corresponding to this parametric subclass is called parametric empirical Bayes. It is
obvious from the equality (1.12) and the definition of R(G) that

RMT,G) = R(G) (1.13)

for all T={¢ty} for all G<=%. The sequence of decision functions T={fy}, where ¢y is

defined by (1.11) is referred to as an empirical Bayes decision procedure.

Definition 1.1. If Il\;m RAT, G)=R(G) for all Ge%, we say that empirical Bayes

decision procedure 7 is asymptotically optimal.

The following lemma is well-known and useful to prove asymptotic optimality of an

empirical Bayes estimation procedure 7'={#y} when squared error loss is used.

Lemma 1.2.
0 <R(tMXy,, Xy ;X n+1), G — R(G)
= E[(tp(Xy, -, XN §XN+1)_fG(XN+1))2],

where E denotes the expectation with respect to X yy;.

Asymptotically optimal empirical Bayes estimation procedures with binomial and normal
components are considered in Section 2 and 3 for both nonparametric and parametric
situations. For the parametric empirical Bayes we follow the first tract and for the
nonparametric empirical Bayes we follow the second track to obtain asymptotical optimal
empirical Bayes estimates.

2. Esimation of the binomial parameter

Let (8,,X,), ", (8x, Xx),- be a sequence of independent and identically distributed
random vectors, in which the conditional distribution of X, given #; is binomial (i, 8,) for
each 7=1,2,--, and 6, 8,,- are i.id Ge&%8. Here wm is given positive integer. We

consider the asymptotical optimal empirical Bayes estimates of @ y.; based on Xy, ", X y+1.
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2.1. Nonparametric empirical Bayes estimate

Let 8 ={G IfollﬁldG(ﬁ)<00}. A Bayes estimate f¢(x) of 6 y4; based on X yy;=x under
squared error loss is given by posterior mean of 8, ie., for x=0,1,, m,
tlx) = E(0N+11 lx)
(%) [ o 'a-o "dc(o)

m 19"(1—6) "G )
X 0

x+1 fG,m+l(x+l)
m+1 fenx)

(2.1

1
where fg m(x)= fo fo{x)dG(8) is the marginal density function for X|'s.

Let  fnn(x) be a consistent estimate of fg n(x), i€, faum(x)—=fom{x) as. as

N-—oco for all x. Viewing (2.1), we obtain an empirical Bayes estimate

tx)= fn:ll fN’}";l((z—;l) x=0,1,--,m. (2.2)

It follows that for each fixed x #{x) —t(x) as. for any G868 as N— oo,

Theorem 2.1. The empirical Bayes estimation procedure 7={¢y} defined by (2.2) is
asymptotically optimal.

Proof. It is easily seen that, for all sufficiently large N, [tp{x)—t{x)<1. Since
tx)—t(x) as. as N— oo, it follows from dominated convergence theorem and Lemma

1.2 that T={?y} is asymptotically optimal. []

Example 2.2. (Consistent estimate of f; ,»(x)) Consider the sequence of random variables
X1,, X'n,r, where X y denotes the number of successes in the first (m—1) out of
the m trials which produced Xy successes, and let

number of terms X';,---, X 5 which are equal x
fN,m—l(x)z N .

Then fym-1(x)—=fc.m-1(x) as. as N— o0, by the strong law of large numbers.
2.2. Parametric empirical Bayes estimate

Suppose that G is in the class € of conjugate priors. Conjugate prior for binomial is beta
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distribution. Thus 8 ={ beta(a, 8)la>0,8>0}. With the G=beta(ea,8) in €, posterior
distribution of @ is betala+ X yy,,m+B8—Xys1). A Bayes estimate is given by the

posterior mean of @y, i€,

tG(XN+l) = E(6N+1 lXN+l) (23)
a+ X noy
atB+m -

Let ap PN be estimates of @, 8 using data X;,--, Xn. An empirical Bayes estimate
(X, -, X~ ; X ney) corresponding to (2.3) is obtained by substituting @, £ by ?IN, BN,
ie.,

ant X ne1

tN(le.“’XN ;XN+1)= /L\YN’*' ?N+m

(2.4)

Using the method of moments we obtain consistent estimates of @, 8. Let £é= Ef, 7= E&

be the first two moments of 4.

Remark 2.3. Let X’N and Sg\; denote the sample mean and the sample variance of

Xy, -+, Xn, respectively. It is easily seen that
E Xy=mé&  ESi=m(&— 7). (25)
Since G= beta(a, 8), we have
_ EE—n _ (Q=8(&—2n)
a= , = ) (2.6)
n— £ g E— 7

Utilizing Remark 2.3 (2.6), the method of moments leads to the estimates of a, 8 through

the estimates of &, 7,

~ + ~ +
= %Aj\( &y ZN)) , /BN:( ¢! ?N)( &y . ) , 27)
INT %N IN— /EN
where
&= i Xy, anv= ‘71; ( Xn—S5). (2.8)

Remark 2.4. ay, By are consistent estimates of a, 8.
Proof. By the strong law of large numbers, %N‘*{-' a.s. and A7/N—->7} as. as N—oo,

Consequently, ay—a a.s. and %N”’B as., as N—oo, []

We now prove the asymptotic optimality of the empirical Bayes decision procedure.
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Theorem 2.5.(Maritz and Lwin(1989)). The empirical Bayes estimation procedure T ={¢y}
defined by (2.4), (2.7) and (2.8) is asymptotically optimal.

3. Estimation of the normal mean

Let (X,,8,), -, (Xy, 05, - be a sequence of independent and identically distributed
random vectors, where the conditional distribution of X, given 8; is N(8;,¢) for each

i=1,2,--, and 6,6, are iid. G=% with 0< ¢ <o known.

3.1. Nonparametric empirical Bayes estimate

Let 8 ={G |fl(9|dG((9)<00 and G has support [KI,KZ]}, where K, K, are given

numbers. A Bayes estimate of @y, at GE® based on the observation X y+;=2x is given

by posterior mean of & y4,, le.,

[ 6f o(x)dG(6)
[#ox)d6eo)

to(x)= E[Ons | X vy 1=2x]=

Y
where folx)= \/717r 7 expl — —ﬁﬁ)—], —oo < x< o0, Integration by parts applied to the

numerator of the last equality gives

. [ olx)
telx)=x— ZOR —o0 < x< oo, (3.1)

where fo(x) = ffg(x)dG( @) is the marginal density of the X,'s and " ¢(x) = 71%% Folx).

Now, X, ", Xy are N independent observations from fg Let fp{x)= /Xy, ", Xy %),
Flx)=F X, -, Xn;x) denote the consistent estimates of fg(x), f ¢(x) based on

X, -, X, respectively. An empirical Bayes estimates can be defined by
_ N . €2)
tN<x)—'tN(X1,"',XNyx)_x_‘ fN(x) . (32)

Let Fglx)= f_ . fc(8)dt, the marginal cumulative distribution function of X . Define

t ces S
P Xy, Xy i2) = number of erm;Xl, s XN x’ (33)

the empirical distribution function determined by X,,-:-, Xy Choose a sequence of positive

numbers {cn} and define, for each N=1,2, -,
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FN(Xl’ ---,XN Xt CN)—FN(le ”'!XN Dx— CN)
2CN

Xy X 0= : (34)

and
fN(le"',XN ;x+ CN)"fN(Xl,“‘,XN y X CN)
ZCN :

Xy, Xnio)= (3.5)
Remark 3.1. (1) If cy—0, N-cy—© as N—oo then fu(X;, ", Xny:x)—=fc(x) in
probability for all x € R.

(i) If cy—0, N+chy—o as N—oo then f MXy, -, Xn;x)—Ff c(x) in probability for all

XENRN.
Proof. Since X|,---, Xy are independent with the distribution function Fg 2N: cpfalx) ~

binomial (N, Fs(x+ cy) — F{x— cy)) and

Efu(x) = 5= [Folx+ ey) = Fla— eyl

var fx) =

m[FG(x+ CN)_‘FG(x-CN)][I—FG(x+CN)+FG(x_CN)]

for all x, N=1,2,--. By the Chebyshev’s inequality, for all ¢
P{/idx)— Ef{x)} > &}

o varfx)

£
- EFI_C?V?[FG(QH_ en) —Fdx—cplll— Flx+ cy) + Felx— eyl
= —Z—JFlgi,e—sz(H el —Fdx+cy)+ Flx—cp))

— (} as N—oo,
where |cy| < cy for each N=1,2,---. Therefore, fa{x)— Efp(x) —0 in probability, provided
that cy—0, N:-cy— as N—oo. It is clear that Ef\(x) — fc(x) as cy—0. Therefore,

Fx) = fc{x) in probability as N—co, for all x € R. This proves (i). Proof of (ii) is similar.
il

Theorem 3.2. Let T={ty}, where ty is defined by (3.2), (3.3), (34) and (35). Then T is

asymptotically optimal for all G=§.
Proof. By Remark 3.1, #y(x)—ts(x) in probability for all x. Since G is concentrated on

the compact interval [K;, K], |t X ys1) —tc(X y+1) ] <IK|+1K,| < co. By dominated

convergence theorem, li}vn E[ (tp(X pe1) —te(X v+1))?1 =0 and by Lemma 12, T={ty} is
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asymptotically optimal at G. (O
3.2. Parametric empirical Bayes estimate

Suppose that the unknown prior G is in the parametric family of normal priors
8 ={N(y,?)|—c0o<u<oo, )<<}, For G=MNu,t*)=8, posterior distribution of

cut P X
0 N+ given X yiyp is N “ 7 Z_ZNH , 0202_:2 Z ). Therefore, a Bayes estimate of 8 y4 is

te(X ne1) = szrz ut ozirz X N+1. (3.6)

Since ¢ is known, we let & =1 without loss of generality, and (3.6) can be written as

tG(XN-f-I): 1-&2‘2 /l+ l'z:l'z XN+1. (3.7)

An empirical Bayes estimate corresponding to (3.7) is obtained by substituting 7 and u by

. . . ~ 2 ~ e
their appropriate estimates 75 and gy based on Xi,---,Xy From the distributional

assumptions and the properties of the conditional expectation we have the following remark.

Remark 3.3. For each N=1,2, -,
1 —
El-y ﬁlX,»] =y, (3.8)
E[ 2X?]=u2+ 241,

Define
HN iX 1 . (3.9)
= 2
™= ﬁ;:XZ Xy —1=(1-)$h—1)
By the strong low of large numbers and Remark 3.3 we have,
Remark 34. uy—u# as. and ATNZ —7% as. as N—oo,
Define T={fy} as
1 ™'
X o)) =—— 5 Xnt+t—2=5X (3.10)
MX v 1+ z_Nz N 1+ z_2 N+1

for each N=1,2, -, where AZ'NZ is given by (39). By Remark 34, the empirical Bayes
estimate #{X y+1) given by (3.10) converges to #;(X y¢;) as N—co,
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Theorem 3.5.(Maritz and Lwin(1989)). T={¢y} in (3.10) is asymptotically optimal.

4. Concluding remarks

We have considered the nonparametric and parametric empirical Bayes estimation procedures
with the binomial and normal components and proved their asymptotic optimality. Particularly
in the parametric empirical Bayes estimation for the normal mean asymptotic optimality was
proved without the assumption of compact support for the prior.

Estimating densities and their derivatives are essential in case of nonparametric empirical
Bayes estimation. There should be more efficient ways than those used in this paper based
upon the empirical distributions. In case of the parametric estimation, other procedures
including the method of maximum likelihood can be compared to the method of moments
employed here.
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