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On Second Order Probability Matching Criterion
in the One-Way Random Effect Model

Dal Ho KimV), Sang Gil Kang? and Woo Dong Lee®

Abstract

In this paper, we consider the second order probability matching criterion for the
ratio of the variance components under the one-way random effect model. It turns out
that among all of the reference priors given in Ye(1994), the only one reference prior
satisfies the second order matching criterion. Similar results are also obtained for the
intraclass correlation as well.
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1. Introduction

Consider the following one~way random effect model
Yy=utate;, i=1,-,L;j=1,-] (1.1)
where g is an unknown constant, and the @; and €, are independent normal variables with
0 means and variances 0‘2,, and oz, respectively. Let ¢=]o’2,,/ ¢ be our parameter of interest.

The present paper focuses on noninformative priors for ¢. We consider Bayesian priors
such that the resulting credible intervals have coverage probabilities equivalent to their
frequentist counterparts. Although this matching can be justified only asymptotically, our
simulation results indicate that this is indeed achieved for small or moderate sample sizes as
well.

This matching idea goes back to Welch and Peers(1963). Interest in such priors revived
with the work of Stein(1985) and Tibshirani(1989). Among others, we may cite the work of
Mukerjee and Dey(1993), Datta and Ghosh(1995a,b, 1996), Mukerjee and Ghosh(1997).
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Mukerjee and Dey(1993), Datta and Ghosh(1995a,b, 1996), Mukerjee and Ghosh(1997).

On the other hand, Berger and Bernardo(1989, 1992) extended Bernardo’s(1979) reference
prior approach, giving a general algorithm to derive a reference prior by splitting the
parameters into several groups according to their order of inferential importance. Quite often
reference priors satisfy the matching criterion described earlier.

The ratio of variance components in the random effect model has been of interest for a
long time, especially in animal sciences, where this ratio is usually used to estimate the
genetic heritability of a certain trait of livestock breeders (Graybill et al., 1956). One difficult
part of the analysis of the model (1.1) from the sampling theory point of view is the possible
negative estimates for oza as well as for ¢. Thus a Bayesian analysis for this model is
desirable, not only because of its intrinsic merit, but also because it can resolve this problem.

Also the commenly used intraclass correlation p= o o (& s ¢) is a one-to-one transformation

of ¢. Therefore, when a good prior distribution for ¢ is obtained, its transformed prior
distribution for p can be used as well. Moreover, the probability matching priors are invariant
for the transformation between p and ¢. (cf. Datta and Ghosh, 1996).

The problem of estimating variance components in the one-way random effect model has

been investigated by many authors from a Bayesian point of view. We may refer to
Hill(1965), Box and Tiao(1973), and Palmer and Broemeling(1990), among others. Recently,
Ye(1994) developed reference priors for ¢, examined frequentist coverage probabilities of
posterior quantiles for various ¢ and compared risk functions of the Bayes estimators for
reference priors. Also Chung and Dey(1998) derived reference priors and first order probability
matching priors for © and examined the frequentist coverage probabilities of posterior
quantiles for various p.

The outline of the remaining sections is as follows. In Section 2, we derive Fisher
information matrix under the reparametrization. Then we provide a class of second order
probability matching priors of which particularly simple one is recommended. In Section 3, we
investigate which one satisfies the second order matching criterion among reference priors
given in Ye(1994) and Chung and Dey(1998) respectively.

2. Main Results

For a prior 7, let 6) °(x;Y) denote the (1 — a)th percentile of the posterior distribution
of 6,, that is,

P60, <6/ (m; V) Y]=1—g, (2.1)

where =0, 0y, 0;)7 and 6, is the parameter of interest and 6, and 65 are nuisance

parameters. We want to find priors x for which
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P[6,<6)"(x; V)I6]=1—ca+o(n""). (2.2)

for some u>0, as #n goes to infinity. Priors x satisfying (2.2) are called probability

matching priors. If #=1/2, then x is referred to as a first order matching prior, while if
u=1, mis referred to as a second order matching prior.

In order to find such matching priors 7z, it is convenient to introduce orthogonal
parametrization (Cox and Reid, 1987; Tibshirani, 1989). To this end, let

1/7
w =] 4/, wz=02(%) . wy=p. (2.3)

With this parametrization, the likelihood function of parameters (w;, wy, ws) for the model

(1.1) is given by

L(w,, wy, w3)cw, mzexp{ -

S+

1
2(1 + wl) - sz [

S, +I1J(Y— wsy)?
1w, ]] (2.4)

Based on (2.4), the Fisher information matrix is given by

- +w) 2

27 f 0
1/7-1
L)

Thus w; is orthogonal to w; and w; in the sense of Cox and Reid(1987). This

orthogonality was suggested by Solomon and Taylor(1999). Following Tibshirani(1989), the
class of first order probability matching prior is characterized by

ﬂ,:,l)(wl,wz,wa)oc(l‘l' wy) ~1a( Wy W3), (2.5)
where d(ws w3) is an arbitrary function differentiable in its arguments.

Clearly the class of prior given in (2.5) is quite large, and it is important to narrow down
this class of priors. To this end, we derive the class of second order probability matching
priors for one-way random effect models following Mukerjee and Ghosh(1997).

Theorem 1. The second order probability matching priors are given by
T wy, wy, w3) < (14 wy) “'wy 'h(ws), (2.6)

where h(w3) is any smooth function of ws.
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Proof. A second order probability matching prior is of the form (25), and also d must
satisfy an additional differential equation (cf (2.10)) of Mukerjee and Ghosh(1997), namely

1 d(wz w3)——- (11_1 2Ll 1. 1)+ {1111/2L 1121220'(“/2. w3)}
(2.7)
+ a—w3 {1521 I P d(wp, w3)} =0
where
L= BL(OPRE = JELUZ2) (1) 2,
Lyy=El 0" lloagl;] I(]Z—jl) (1+w) *w
L= E[*Q—lgagL]—O
ws
and
IS S Iy I Iy ~0 [ H0-D0+e)T 7
[12‘ 1% 123]= Iy In Iyn| = 0 b 0
) S S A Iy Iy Ig . -
0 I+ wy) 7T
Then (2.7) simplifies to
(242" 2 w0 52w, wp) =0, 28

Hence the set of solution of (2.8) is of the form
d(wz, w3) = wy ' h(ws),
where #(w;) is any smooth function of ws. Thus the resulting second order probability
matching prior is given by
a2 (wy, wy, wy) o< (14 wy) ~ oy 'hws).

This completes the proof.

Also we are interest in the intraclass correlation, p=0‘2a/ (02 Tt & ). Especially,
o=w;/(w;+]) is a one-to-one function of w;. Thus by using invariance property of

probability matching priors under one-to-one transformation of the parameter vector (Datta
and Ghosh, 1996; Mukerjee and Ghosh, 1997), we obtain the second order probability matching

prior for 7.2(p, wy, wy) from the matching priors (2.6) as follows.

720, wy, wy) < [1+(T—1 0] “H1—0) wy hws). (2.9)
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We consider a particular second order matching prior where £ is a constant in (2.6). This

choice is very natural since ws is the location parameter. Thus we have

T2 (wy , wa, w) o< (14 wy) “lwy L. (2.10)
Again by using invariance of probability matching priors under one-to-one transformation of

the parameter vector, we obtain the second order probability matching prior 7.2(¢, &>, #) and

7,2 (p, %, 1) from the matching prior (2.10), respectively. The results are as follows.

Corollary 1. For the random effect model (1.1), (i) if ¢7=]02,,/62 is the parameter of
interest, then the second order probability matching prior for (¢, 02, ) is given by

A 2(p, 0%, ) o (1+¢) 7L 211)

(i) If p=0%/(d%+ ) is the parameter of interest, then the second order probability

matching prior for (p, & , &) is given by
720, &, w) <o 1+ (J—1pe] M1—p) 7 . (2.12)

Using the results of Corollary 1, we can examine which one satisfies the second order
matching criterion among reference priors given in Ye(1994) and Chung and Dey(1998)
respectively.

3. Simulation Study and Discussion

Ye(1994) derived four reference priors for different groups of ordering of (¢, ;1,02) under the

model (1.1). In specific, if ¢=]02a/ & is the parameter of interest, then the reference prior

distributions for different groups of ordering of (u, °, $) are as follows.

Group ordering Reference prior
{(¢, 1), %) noco 314 ¢) T
{(¢, 12, )} nyoca T4 (1+ ¢) 32
(¢, 11,0, {6, P 1}, (8, D, 1) mixo X(1+¢) !
{#, (1,09} rio<e A (1+¢) 7!

Based on both the asymptotic frequentist coverage property and the decision theory points
of view, Ye(1994) revealed that 72'3y , the one-at-a-time grouping reference prior, is the best
among all of these reference priors when ¢ is the parameter of interest. Table 1 (Ye, 1994)
shows that 7r3Y seems to be the best in the sense of the frequentist coverage probabilities of

0.05(0.95) posterior quantiles for ¢. Those numerical findings are consistent with our
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theoretical results. That is, from (i) of the Corollary 1 in Section 2, only 71'3Y

second order probability matching criterion.

Table 1

Posterior Quantiles for ¢

. Frequentist Coverage Probabilities of 0.05 (0.95)

o (L] 7r1y 7r2Y n{ 7r4y
1 (6,5 0.03(1.00) 0.03(1.00) 0.05(1.00) | 0.06(1.00)
(75) 0.03(1.00) 0.03(1.00) 0.05(1.00) | 0.06(1.00)
(5,10) 0.03(1.00) 0.03(1.00) 0.05(1.00) | 0.06(1.00)
(10,5) 0.03(1.00) 0.03(1.00) 0.05(1.00) | 0.06(1.00)
(10,10) | 0.03(1.00) 0.03(1.00» 0.05(1.00) | 0.05(1.00)
(5.20) 0.02(1.00) 0.02(1.00) 0.05(1.00) | 0.05(1.00)
(20,5) 0.03(0.97) 0.04(0.97) 0.05(0.98) | 0.05(0.98)
5 (6,5) 0.02(0.91) 0.03(0.93) 0.05(0.97) | 0.06(0.97)
(7.5) 0.02(0.91) 0.03(0.92) 0.05(0.96) | 0.06(0.96)
(5,10 0.02(0.92) 0.03(0.93) 0.05(0.99) | 0.05(0.99)
(10,5 0.03(0.91) 0.03(0.92) 0.05(0.95) | 0.06(0.95)
(10,10) { 0.03(0.91) 0.03(0.92) 0.05(0.95) | 0.05(0.95)
(5.20) 0.02(0.92) 0.03(0.92) 0.05(0.99) | 0.05(0.99)
(20,5) 0.03(0.93) 0.03(0.93) 0.05(0.95) | 0.05(0.95)
10 (6,5) 0.02(0.89) 0.03(0.90) 0.05(0.95) | 0.06(0.96)
(75) 0.03(0.91) 0.03(0.91) 0.05(0.95) (| 0.06(0.96)
(5,10 0.03(0.89) 0.03(0.89) 0.05(0.96) | 0.05(0.96)
(105) | 0.03(0.91) 0.03(0.92) 0.05(0.95) | 0.06(0.95)
(10,10) | 0.03(0.91) 0.03(0.91) 0.05(0.95) | 0.06(0.95)
(5.20) 0.03(0.89) 0.03(0.90) 0.05(0.96) | 0.05(0.96)
(205) 0.03(0.93) 0.03(0.93) 0.05(0.95) | 0.05(0.95)
50 (6,5) 0.02(0.90) 0.03(0.90) 0.05(0.95) | 0.06(0.95)
(75) 0.03(0.90) 0.03(0.90) 0.05(0.95) | 0.05(0.95)
(5.10) 0.02(0.88) 0.03(0.89) 0.05(0.95) | 0.06(0.95)
(10,5) 0.03(0.91) 0.04(0.92) 0.05(0.95) | 0.06(0.95)
(10,10) | 0.03(0.92) 0.03(0.92) 0.05(0.95) | 0.05(0.95)
(5,20) 0.02(0.89) 0.03(0.89) 0.05(0.95) | 0.05(0.95)
(20,5) 0.03(0.93) 0.03(0.93) 0.05(0.95) | 0.05(0.95)

satisfies a

Also when p is the parameter of interest, Chung and Dey(1998) derived four reference

priors for different groups of ordering for (p, /J,Gz) and the first order probability matching

priors for p under the model (1.1). Specifically, if o=7 ol (dza—i- ¢°) is the parameter of

interest, then the reference prior distributions for different groups of ordering of (g, & ,0) are

as follows.
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Group ordering Reference prior

{o,1,}, {0, 1), {(o, D), 1} 2feco 21+ (J-Dp) 'Q—p) !

(o, (1,)) rfec 1+ (/= p) (1= p) !
{(o, 1), 0"} r§oco T 1+ (J— Do) “¥H1—p) T2
{(p, ", )} rfoca 31+ (J-1)o) YA 1—p) 12

Also the first order matching priors are of the form
7o, 1, ) o< (b (Ind* + 0) + ko A1+ (J- Do) "1—-0) 7',

where %k, and A, are arbitrary constants.

Tale 2 : Frequentist Coverage Probabilities of 0.05(0.95)
Posterior Quantiles

0 (rj) my ol ol s
34| (65) 0.05(0.95) 0.06(0.95) 0.02(0.89) | 0.03(0.90)
(7.5 0.05(0.95) 0.06(0.95) 0.03(0.90) | 0.03(0.91)
(5,10) | 0.05(0.95) 0.05(0.95) 0.02(0.89) | 0.03(0.89)
2/3| (65 0.05(0.95) 0.06(0.96) 0.03(0.89) | 0.03(0.90)
(715) 0.05(0.95) 0.06(0.96) 0.03(0.90) | 0.03(0.91)
(5,10) | 0.05(0.95) 0.05(0.95) 0.02(0.88) | 0.03(0.89)
/2| (6,5) 0.05(0.97) 0.06(0.97) 0.02(0.92) | 0.03(0.92)
(75) 0.05(0.97) 0.06(0.97) 0.03(0.91) | 0.03(0.92)
(5.10) | 0.05(0.96) 0.05(0.96) 0.02(0.89) | 0.03(0.89)
1/3| (6,5) 0.05(1.00 0.06(1.00) 0.03(0.98) | 0.03(0.98)
(7.5) 0.05(0.99) 0.06(0.99) 0.03(0.96) | 0.03(0.97)
(6.10) | 0.05(0.98) 0.05(0.99) 0.02(0.92) | 0.02(0.92)
1/5| (6,5) 0.05(1.00) 0.06(1.00) 0.03(1.00) | 0.04(1.00)
(75) 0.05(1.00) 0.06(1.00) 0.02(1.00) | 0.03(1.00)
(5,10) | 0.05(1.00) 0.05(1.00) 0.03(1.00) | 0.03(1.00)

Chung and Dey(1998) revealed that the #zf and 75 are better than 75 and 7§ in the
sense of the asymptotic frequentist coverage probability, where only irlc is the first order

matching prior. But this conclusion for reference priors for p somewhat differs with the
results of Ye(1994). Since the p= ¢/(¢+J)) is a one-to-one function of ¢, the results for ¢
in Ye(1994) are expected to be consistent with the results for p in Chung and Dey(1998). Our
theoretical results in Section 2 show that the only reference prior 71'1C satisfies the second
order matching criterion from the (ii) of Corollary 1. Thus we reinvestigate the credible
interval for p under four reference priors for comparison using the design situation of Chung

and Dey(1998). That is to say, the frequentist coverage of a (1—a) th posterior quantile
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should be close to 1—a. This is done numerically.
Table 2 provides frequentist coverage probabilities of 0.05(0.95) posterior quantiles for o
under four reference priors. The computation of these numerical values is based on the

following algorithm for any fixed true p and any prespecified probability value . Here « is
0.05(0.95). Let p™(al Y) be the posterior a-quantile of o given Y. That is to say,
Flo™(a|l V)| Y)=a, where F(-|Y) is the marginal posterior distribution of p. Then the

frequentist coverage probability of this one sided credible interval of p is
Pa;0)=P,(0<p<p(al Y)). (3.1)
The estimated P ,(a;p) when @=0.05(0.95) is shown in Table 2. Actually Table 2 was
computed in the following way. For fixed p, we take 10,000 independent random samples of
Y from the model (1.1). Note that under the prior #, for fixed Y, p<p™a| Y) if and
only if F(o™(a| Y)| Y)<e. Under the prior n, P,(a;p) can be estimated by the relative

frequency of F(p"™| Y)<a. From the Table 2, 7y is the most appealing reference prior

distribution in the sense of the asymptotic frequentist coverage probability.

Consequently the second order matching criterion seems to give more appropriate choice
among several reference priors for ¢ and p in the asymptotic frequentist coverage probability
points of view.
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