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On the Goodness-of-fit Test in Regression Using
the Difference Between Nonparametric and Parametric Fits.

Chang Kon Hong!?) and Jae Seon Joo02)

Abstract

This paper discusses choosing the weight function of the Hardle and Mammen
statistic in nonparametric goodness-of-fit test for regression curve. For this purpose,
we modify the Hirdle and Mammen statistic and derive its asymptotic distribution.
Some results on the test statistic from the wild bootstrapped sample are also
obtained. Through Monte Carlo experiment, we check the validity of these results.
Finally, we study the powers of the test and compare with those of Hirdle and
Mammen test through the simulation.
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1. Introduction

When one fits a parametric regression model, it is important to check the appropriateness of
the postulated model. A standard parametric approach is the general linear test approach,
which is F-test. This parametric approach is efficient in detecting the lack-of-fit in certain
specified directions, but inconsistent against the other alternatives. To overcome this difficulty,
nonparametric regression approach has been considered by many authors.

Suppose that we have independent and identically distributed( i.i.d.) » observations
(X;,Y),,(X,,Y,), which follow the regression model,

Y]=m(X/)+ejy j=1y“.)n ’
where the regression function m is defined as m(x)=E(Y;| X; =x), e;-s are error terms

such that E(e;| X)=0 and &;s are conditionally independent given X|,---,X, . Note that
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we do not necessarily assume that e,-'s are conditionally identically distributed. So the above

model contains the case of conditional heteroscedasticity. We wish to test that
Hy: me{myg: 0 € 2} against H, : m is a smooth function. Here, my(x) = 20,-&(96)
~“

with 6;'s unknown parameters and g, s known functions of x.

Nonparametric tests usually use the residuals obtained by fitting the null (parametric) model
and derive the test statistic by regressing the residuals nonparametricallv. Yanagimoto and
Yanagimoto(1987), Cox et al.(1988) and Buckley(1991) proposed nonparametric test statistics
for random smooth function. In the case of fixed smooth regression function, Eubank and
Hart(1992) used a data-driven smoothing parameter as the test statistic based on series
estimator. Hairdle and Mammen(1993) suggested the squared L%-distance between the
parametric null model fit and the nonparametric fit as the test statistic. Other related works
are those of Hiardle and Marron(1988), Munson ‘and Jernigan(1989), Eubank and
Spiegelman(1990), and Eubank and LaRiccia(1992).

In this paper, we will basically consider the method of Hirdle and Mammen(1993). Hardle

and Mammen(1993) used the squared (weighted) L %-distance between the parametric fit and
the nonparametric kernel type fit as the test statistic. But, they didn't mention about the
choice of the weight function. In their simulation they used the constant weight. It is intuitive
to choose the weight function in such a way that more weight should be given to the values
of x which have high probability (density). This is achieved if we use the design density
A x) as the weight function. However, A x) is usually unknown and must be estimated from
the data. Another way to achieve the idea of '‘more weight to the high probability density
points x' 1s to use the average squared distance between the parametric and the

nonparametric fits at the design points X,,--, X, .

In section 2, We show that this modified statistic has the same asymptotic property as the
Hardle and Mammen test statistic (in the following, on we will denote this by H-M statistic)
with A x) as the weight function. We also obtain the asymptotic results ahbout the wild
bootstrapped critical values, which are similar to those in Hirdle and Mammen(1993). In
section 3, some simulation results are given. Finally, we remarks some conclusions in
section 4.

2. Modified H-M test statistic and its asymptotic distribution

Let m g be the parametric regression estimator under Hj and 7}1\;, be a kernel estimator
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of m with bandwidth 7% and kernel K. Here, we consider the Nadaraya-Watson kernel

estimator 771,,, that is,
- Ki(x—X)Y;
3K (-X)

where K,(-)=h 'K(-/h). The question is whether the difference between mz{ -) and

;’\lh(x):

7/7\4;1 can be explained as the fluctuations within the null (parametric) model. Hardle and

Mammen(1993) measure this difference by

n\ﬁzf( ()= K mal0)u(x)dx
where K, ,q( +) is the (random) smoothing operator

3% Ky — X )a(X)
K hon Q(x) ==
2 Ki(x— X))

and w( -) is the weight function. Instead of using mg{ - ), they used K, ,mz{ -). This is

because E( m,( - )X, X,)= K, ,m(-). As mentioned in the introduction, they didn't

consider the problem of choosing the weight function. The intuitive choice of w( - ) is the
design density f( - ). This choice of the weight function is intuitively appealing since with
this weight function high probability density points have more weights in measuring the
distance. However, #( +) is usually unknown. Another way to give high weight to high
probability density points is to modify the measure of distance. Let

Tu=Vh 2 (XD = K jum X)),

T, may serve as a test statistic for testing Hy: m(-)e{m(-)=68g(-); =R},
where 6= (6, ,0,) and g(-)=(g (), , g ).

To derive the asymptotic power of the test, we assume that the alternative regression

function is m(x)= m 4 (x) + c,d,(x) for certain sequences c¢, and 4, Here 6, and 4,

may be chosen as
B, = argamin f(m(x) —m o(%))2f(x) dx

and

AL )= (m () =ma( -

Cn

Note that, with these choice of 8y and 4,, , 4, is orthogonal to {my; = 2} in the sense
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that
[a0efDde=0, i=1,k

Under H;, the least squares estimator 9 of 8 is given by

= FEMIN S (Y —m ()
Using the orthogonality of 4, to {m,; 6< £}, it can be shown that
1

D= G+ ~ Z}lu(Xi)eﬁr 0,7(—\7%)

and

Cn

mol )= me, ()= CZ u(X)edTel ) +(0, (2N el ),

where ()= ( [ g(x)g(x) "F(x)dx) g -).

For the derivation of the asymptotic properties, some assumptions are needed on the
stochastic nature of the observations, the parametric estimator of the regression function, the

kernel K and the bandwidth /% We assume the same assumptions as in Hardle and
Mammen(1993). For the details of these assumptions, see Hardle and Mammen(1993).

Below, the Mallow’s distance d(x,1) between the probability measures g and v is given
by
duw )= " (EIX-YPAL £(X0=p £(D=v),
where £(T) is the law of T. It is well known that the convergence in this metric is

equivalent to the weak convergence.

Theorem 1. Under certain conditions , we have
d(E(T,) , N(by+ [(Kprd () A(0)dx, V)) =0,
where

by=h " VK*K(0) [ (2,

V= thaz(x)dz(y) (K*K(x— ) dray.

Here * is the convolution operator.

Proof of Theorem 1 is given in the Appendix.
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As was pointed out in Hardle and Mammen(1993), the convergence rate is so slow that it
is more appropriate not to use the above asymptotic result to find the critical values. The
suggested alternative way is the bootstrap method. Three possible ways of bootstrapping are

(1) naive resampling method,
(2) the adjusted residuals bootstrap, and
(3) the wild bootstrap.

Let 7T, be the statistic T, computed from the bootstrapped data. For the first two
bootstrap methods, the conditional distribution £ (T))=£(7T)| X, Y;, i=1,-,n) has
different asymptotic distribution from £(7,) even under the null hypothesis (see Hardle and
Mammen (1993)). Therefore, we concentrate on the third method, wild bootstrap. The idea of
wild bootstrap lies in that the bootstrapped data {X;*, Y/}, .. , is constructed so that

EX(Y 1 X =maxX])
(for references, see Wu(1986), Beran(1986), Liu(1988) and Mammen(1993)). Let T % be the
T, obtained from this bootstrapped data. Generate B bootstrap data sets and calculate TV

!

.. L~ W . .
s. The empirical (1—ea)-th quantile 7, gives the approximate (1 —a)-th quantile of

£°(T"Y). Reject Hy if T,> /t;w. The following theorem shows that the test procedure

really works.

Theorem 2. Let /8\* be the parametric estimator based on the bootstrap sample. Then under
the same conditions as in Theorem 1 and the foliowing assumption

Y — =-1L T Ve 7
(PD m () —mgl-)=" 2,8(x) "u(X)e/ +0,((nlogn) °)
it holds that
d(£*(T""),N(b,, V)) = 0,

where b, and V are the same as defined in Theorem 1.

Condition (P1) is fulfilled under standard regularity conditions. The proof of Theorem 2 is

similar to that of Theorem 1. The conditions of De Jong(1987) that sup;e’= O,(logn) and

Ele; |® is bounded (uniformly in ¢ and ») can be checked using the condition (A5).

3. Simulation results

We check the validity of the asymptotic results through Monte Carlo experiment. For this

purpose, we investigate four different cases: in the following m4(x) is the parametric null
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model and m(x) is the true regression curve.
) my(x) and m(x) are linear, o(x)=o0
i) me(x) and m(x) are linear, o(x)=(1+x%0o
iii) mg(x) and m(x) are quadratic, o(x)=o0
iv) mg(x) and m(x) are quadratic, ofx)=(1+x%)a.

We generate X;, i=1,--+,100 from uniform(0,1) and ¢, i=1,--,100 from N(0, 6*(x)) and
let Y;=m(X,)+e; We use the quartic kermel function K(u)=—1i(l—u2)zl(|u|£1).

M=1000 samples are drawn for each case. One out of these 1000 samples is randomly
chosen and the wild bootstrap resampling is performed B= 100 times from this sample. As
was done in Hirdle and Mammen(1993), we obtain the Monte Carlo density of 7, and the
kernel density of 7" % from one bootstrap sample. The results are similar to those of Hardle
and Mammen(1993): In all of the four cases the Monte Carlo densities and the kernel densities

from one bootstrap sample are quite close but the asymptotic normal densities of theorem 1
are quite different. We omit the details.

We also study the power of our bootstrap test. The simulations are done for 2 different
cases:

D ome(x)=6,+60x, m(x)=1+x+pre .

i) mge(x)=6,+ Gx+ 03x° m(x)=2x—x2+,8(x—7i)(x——é)(x——i-) )

M=100 samples of size n=100 are drawn from each true model and the wild bootstrap
resampling is performed B= 100 times from only one of these samples. Uniform(0,1) is used
as the design density. The critical values (of significance level a@=(.05) are obtained from
the kernel densities from the bootstrapped samples. Tables 1, 2, 3 and 4 show the Monte
Carlo estimates of power for different values of £ and bandwidth #%. The estimated power is

the number of the rejections divided by M= 100.

Power comparison between T, and H-M is also performed. To compare the powers, we
generate the samples using Beta(2,5) as the design density. Here we choose Hj :mg(x)
= §;+ f,x against true regression function

) m(x)=1+x+Bxe *

i) m(x) =1+ x+ Bsin(2xx).

For H-M test, the constant weight function, w(x) =1, is used, as was done in Hirdle and
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Mammen(1993). The critical values are chosen so that the level a equals to 0.05. In table 5
and table 6, the underlined rows show the right powers. For both cases T, has better

powers than H-M.

Table 1. Monte Carlo estimates of the power
meg(x) =6y + box , m(x)=1+x+pBxe >,
x ~ uniform(0,1), (o(x)=0.1), level a=0.05

n B 00 05 1.0 2.0

0.10 011 027 080 1.00
020 009 029 084 1.00
023 008 028 081 1.00
025 005 027 081 1.00
030 004 029 076 1.00

Table 2. Monte Carlo estimates of the power
mo(2) =0y + bx+ O, m(x) = 22— x*+ flx— 5 )x— 5 )(x— -[31—),
x ~ uniform(0,1), (o(x)=0.1), level a=0.05

r B 00 0.5 1.0 2.0

010 010 015 045 0.85
020 005 007 034 0.82
022 004 007 037 081
030 002 003 027 048

Table 3. Monte Carlo estimates of the power
me()=0,+ 6x , m(x)=1+x+Bre %,
x ~ uniform(0,1), (6(x)=0.10+x%), level a=0.05

h B 00 05 10 2.0

010 009 019 049 0.99
020 005 014 052 0.98
022 004 015 049 0.98
030 004 014 048 0.98
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Table 4. Monte Carlo estimates of the power
me(x)= 0, + Oox+ O3x?, m(x) =2x—x*+ B(x—%)(x~*%)(x— —?1-),
x ~ uniform(0,1), (o(x)=0.1(1+x%), level a=0.05

R 8 00 05 1.0 2.0

010 008 014 035 070
020 006 008 027 0.68
022 005 006 0.26 0.66
030 002 006 022 0.63

Table 5. Power comparison between H-M and T,

me(x)=0,+O0x , m(x)=1+x+pxe %,
x ~ beta(2,5), (6(x)=0.1), level a=0.05

h B 00 0.5 10 20

010 HM 019 037 057 087
T, 016 024 048 098
020 HM 006 016 042 077
T, 006 013 044 093
022 HM 005 011 037 073
T, 005 012 042 092
030 HM 004 008 027 063
T, 003 005 029 0386

Table 6. Power comparison between H-M and T,

me(x)=0,+0,x , m(x)=1+x+Bsinrx),
x ~ beta(2,5), (o(x)=0.1)

[/ 8 00 0.5 1.0 20

010 HM 021 09 098 1.00
T, 017 09 099 100
020 HM 011 093 094 094
T, 012 092 097 098
025 HM 006 083 08 085
T, 005 08 095 095
030 HM 005 072 074 078
T, 00l 078 090 093
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4. Conclusion

In this paper, we show that our test statistic 7, has asymptotic normal distribution with

mean and variance given in theorem 1, which is the same as that of H-M statistic with f{x)
as the weight function w(x). However, the convergence rate to normal distribution is so
slow that we use the wild bootstrap to find the critical values. The simulation results show
that wild bootstrap estimates the distribution of T, quite well. Most of the simulation results
are similar to H-M, but 7', has better power than H-M test statistic when design density is

not uniform and the parametric null model is linear.

Appendix
Proof of Theorem 1.
It is known that
Ful)= —il- ZK,,(x—~ X.)=Rx)+ 0,(n %5 (logn) '/?) (uniformly in x)
s ()= m(2)+ 0,(n *(logn)"?). (uniformly in )

Using the above equations, it can be shown that

T, = VAR mn(X)— EramalX)°

VA (XD~ B A XD (D o)

ﬁxh(x —X)(m(X)+e,— mg(X))
F(X) +Op(1).

Since
m(X;)=ms(X)+n Pr1a,(X)),

T, can be written as

T,,=\Fh§( Ut (XD + U o (XD + Up s (X2 + 0,(1),
where
711 ]ZK,,(X,-—-X,»)n‘”zh"”"d,,(X,-)
f(Xz) ’

‘}7 jZ‘lKh(X,“‘Xj)Ei
Un.Z(Xi) = f(X;) ,

Un,l(Xi) =
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-_}’l-;= Kh(Xi_Xj)% Z:‘g(Xj)Tu(XI)EI
Un,B(Xi) = f(XZ) .

Now,
EVh 2 Ui (X))
= wWhEU 3(X,)

= nVh- #E(_f-(%ﬁ_) ngh(Xl_Xj)gg(Xj) Tu(XI)Ez)z

= g 'BﬁE(‘}(—IXD‘ goz(X:) ]121 ngKh(Xl“Xh)Kh(Xl_Xiz)
X g(le) Tu(XI)g(Xiz) Tu(Xl))

= - 0n?

= Vh—>0 as #n— oo,

Similarly it can be shown that
2
E\/—h(le"'I‘(Xj). ZlUn'lz(Xj)) “’0, as n — o
fOI' all 13[1( 12£3.

The above results imply

T, = EVACZE Ui(X)H 2 U, oL X)D) +0,(D)
= Ty 1+ Tt T,3t0,1),

where

Toy = Vh 5 U(X),
L 3 KX~ X)e]

Ty, = \/_h; (X)) )
- S KX~ X )ENX,~ X)ee,
Tus = VhZ, X

It is sufficient to show that

() Tor= [(Kukd,(0)(Ddx + 0,(D),
(ll) Tn,2= bh + Op(l) and
(i) d(£(T,5). N, V)) — 0.
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Proof of (i)
E(T,) = Vh-nEU: (X))

2
2 KX = X)A,(X) ]

= E XD
| KO0 2 KX~ X)X
- X))
2 KHX) — X))
’ Ze9)
2 2 KN X = X KA Xy~ X)A,(X)A,(X) ]
+ 1= J 5
e

_ Ki(0) 45( X))
= 2 AR el
- {E( A(XD) )
K (0)4,L XK (X, ~ X5) A5 X,) )
XY
B K3(X,— X)) 44 Xy)
+(n 1)3( oS )
71"1 Kh(Xl"‘XZ)K};(X]*Xg)An(Xg)An(X;g)
+2("5 )E( 7AX0) )}
= 2 ((n—1)n—2A,+0(h ")+ 0(nk™") ,

+(n—1)E(

where

- E K(X,— X)Ki(X,— X3)4,(X;)4,(X5)
( FA(X)) )
— fff Ku(xy — %) Ki 2y — x3) 4. x5) 4, x3)
fz(xl)

X fCe) (%) f(x3) dxydxodxs

fff K ) Kius)d,x; - up)d (%) — u3)
f(xy)

X fx; — wp) f(x; — usz) dusduszdx,

[(Kux 2,0 f(Ddx + O(h).
This shows that
E(T,) = [(Ky*4,(0) F(x)dx + o(1). (AD)
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Similarly it can be shown that
Var(T,,_lIXL...'X,,)=0p(1). (AZ)
Equations (A.1) and (A.2) together imply

Toi= [(Ex 4,2 (Ddxt o,(D).

Proof of (#7)

E(T )
KA X, ~ X)e?
_ 1 ; h 1 e
n"VhE 7(X0)
_ KX0) (X)) K2 X, — X (X,)
- 1 AApYI)0 AA) _ AN 2 2
= n \/—hE( (X)) )+(n I)E( X)) )
_ K2(x,— x2)0%(x2) Vi, -
= Vhea i o) [ [FERIRIN A fx)dz s+ O[5 1 ™)

= Vh-n =D ([ Kiwdu - [ Fxaxt D)+ 0™ h ™)

= n YR KO)) [ P)dit o).

Now

Var( Tn,2 l Xl."',Xn)

KA X~ X))e"
_l__ JZA h H 7
v :21 n? AXD)

2 330\ 2
- VTon }:31( S;:l—l—{”—(f%(—){l) Var 2| X, .. X,

<h-nt }21(';12‘ cne MM (X X

= Var |X1,Xn]

for some M, and M,(X,,:,X,). Therefore, Var(T ,,| X, .. X,)=0,n""k"%=0,1).
This proves T no= byt 0,(1).

Proof of (iii)
Put

i gL Ki(Xi= X)EXi~ X )e; &
=1 n

W, = X

Then T n3 ZZ W/‘/,,
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We will show that

Va T ,3)~V — 0 asn— o, (A.3)
max. g Var W) | Var T o5) — 0. (A4)
ETY s/ VarT,3)? — 3. (A.5)

Then by Theorem 2.1 in De Jong(1987),
d(£(T,3), N0, V) — 0.

Proof of (A.3)
Var(T,3) = E(ZZW””)Z

= 4 E(W?,)

= 45)E(WE).
By tedious calculation, it can be shown that
EOWh) = n "% | [(KisKi(x= 3?06 () dedy + o(1)).
Therefore,

Var T ,3) = 2n(n—1n " *(V+o(1))

= V+o(l).
Proof of (A.4)
In the proof of (A.3), we have shown that

Var( Wj/,,) =0 (n _2h —l).
which implies (A.4).

Proof of (A5)

Similarly as in the calculation of E( W%g,,). the followings can be shown

E WiuWa, Wy, = o(n ™)
E WypuWoh,Way, = o(n ~°)

E W412,, = o(n —2).
Equation (A.5) is proved by the above equations and the following equation

E Thy = 12 REWyWi) +8 L B(W',)
2
+ 192 ’;I ;Z; giE( Wiin WiknWhin)
+ 482 20 20 2 E (Wi Witn Wit W)



14 Chang Kon Hong and Jae Seon Joo

References

[1] Beran,R. (1986). Comment on °''Jackknife, bootstrap and other resampling methods in
regression analysis” by C. F. J. Wu, The Annals of Statistics, 14, 1295~1298.

(2] Buckley, M. J. (1992). Detecting a smooth signal : Optimality of cusum based procedures,
The Annals of Statistics, 12, 101-118.

(3] Cox, D, Koh, E., Washable. and Yandell, B. (1988). Testing the (parametric) null model
hypothesis in (semiparametric) partial and generalized spline models, The Annals of
Statistics, 16, 113-119

[4] De Jong (1987). A central limit theorem for generalized quadratic forms, Probability
Theory Related Fields, 75, 261-277.

(5] Eubank, R. L. and Hart, J. D. (1992). Testing goodness-of-fit in regression via order
selection criteria, The Annals of Statistics, 20, 1412-1425.

{6] Eubank, R. L and LaRiccia, V. N. (1990). Asymptotic comparison of Cramér-von Mises
and nonparametric function estimation techniques for testing goodness-of-fit, The

Annals of Statistics, 16, 113-119,

[7} Eubank, R. L. and Spiegelman, C. (1990). Testing the goodness-of-fit of linear models via
nonparametric regression techniques, Journal of the American Statistical Association,
85, 387-392.

[8] Hardle, W. (1990). Applied Nonparametric Regression Econometric Society Monograph
Series 19, Cambridge Univ. Press.

[9] Hardle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric

regression fits, The Annals of Statistics, 21, 1926-1947.

[10] Hardle, W. and Marron, J. S. (1988). How far are automatically chosen regression
smoothing parameters from their optimal?, Journal of the American Statistical
Association, 83, 86-95.

{11} Liu, R. (1988). Bootstrap procedures under some non iid. models, The Annals of
Statistics, 16, 1696-1708.

{12] Mammen, E. (1992). When does bootstrap work @ Asymptotic Results and Simulations,
Lecture notes in statist, 77 Springer, Berlin.

{131 Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models, The
Annals of Statistics, 21, 255-285.

[14] Munson, P. J. and Jernigan, R. W. (1989). A cubic spline extension of the Durbin-Watson
test, Biometrika, 76, 39-47.

[15) Yanagimoto, T and Yanagimoto, M.(1987). The use of marginal likelihood for a diagnostic
test for the goodness of fit of the simple linear regression model, Technometrics,
29, 95-101.

[16] Wu, C. F. J. (1986). jackknife, bootstrap and other resampling methods in regression
analysis (with discussion), The Annals of Statistics, 29, 1261-1350.



