64

9z WY GAS ol &3 Iy A
254 A

(Computing Symmetric Angle Restricted Nearest Neighbors
using Monotone Matrix Search)

= +
(o] O: -l

(Young-Cheul Wee)

r
i rle
oy
m
H
2
i
<
3
S
0Q
&
>
A
2
)
>
_O,L
rl
4
3
m
bt

o PP AeAT
A

7 BAEE A AAEE W 27 4

=)
M
2,
¥
[
_>|J_vl
X
)
o
3
1 e
)
]
op
o
31—"
fd
i
oo
2
e

Abstract Using the Monotone Matrix Searching, we present an asymptotically optimal O(#log#)
time divide-and-conquer algorithm for solving the symmetric angle restricted nearest neighbor
problem for a set of n sites in the plane under any L, metric, 1<p<oo. This algorithm works quite

well in practice even for small values of n hecause the associated constants in its time complexity are

fairly low, and because it does not follow a locus—based approach.

1. Introduction

In this paper, we consider the Angle Restricted
Nearest Neighbors (ARNN) problem. This problem
who called it the
Geographic Nearest Neighbor Problem. Apart from

was first posed by Yao [11]

being of interest in its own right, several proximity
problems can be solved efficiently by ARNN ap-
proach. Examples of such problems include comput-
ing the minimum spanning tree [11], computing the
relative neighborhood graph [8], rectilinear Steiner
tree [9], and computing the shortest paths for
motion planning [5]. It also has been shown that
most applications of the ARNN problem can be
obtained by solving the Symmetric Angle Re-
stricted Nearest Neighbor (SARNN) problem [8].

We present a simple and efficient O(nlogn) time

- B ATe 3= Sl E AT KRF-99-042 E000S3 E2312 "E-&2 Q)
AziEl FEE AT AW AA9) ALe got A9 APk
tEAsd: olFueE A] FFEIAY a5
yewee@madana.ajou.ac.kr
EERS 20009 79 279

Arleta 20009 129 69

divide-and-conquer algorithm for solving the
SARNN problem for a set of n sites in the plane

under any L, metric, 1<p<co,

Given a set S={p1,p9,...,0;...,0, of n points
in the Euclidean plane, suppose we partition the
plane around each point into k angular regions
where k is some constant. Then, for each region,
define the angle restricted nearest neighbor of p;
to be a point in the given set that lies in this
region and that is the closest to »; in the L,
metric The Angle Restricted
Nearest Neighbor (ARNN) problem requires the
computation of the nearest neighbors in each region

(See Figure 1).

for every given point. Two points, p; and p; are
said to be symmetric angle restricted nearest
neighbors of each other if p; is the neafest
neighbor in one of the angular regions of p; and,
conversely, if p; is the nearest neighbor in one of
the angular regions of p; point. The Symmetric
Restricted Nearest Neighbor (SARNN)

problem requires the computation of all symmetric .

Angle

EERERE

tlo

i

angle restricted nearest neighbors in the given set.
Yao[1l] defined the ARNN problem for the
d~dimensional space, and presented an R
1-ald ad)y=2 —{d+D)

for computing ARNN in the d-dimensional space.

log n) time algorithm where

For L, and L. metrics, Guibas and Stolfi [6] pro-
vided an O(nlog#) time algorithm for solving the
planar ARNN, and Wee et al. [10] provided a divide-
and-conquer algorithm that takes O(xn log 2y) time

in the L, metric, for any constant p=1.

Fig. 1 the angle restricted nearest neighbors of »;
for £=8

In this paper, we provide an O(nlogn) time
algorithm for computing the all pairs Symmetric
Angle Restricted Nearest Neighbors (SARNN) for
any L, metric. Note that the algorithm given by
Wee et al. [13] can be used to solve the SARNN
problem in O(zlog?n) time for any L, metric. This
implies that for the SARNN problem, our algorithm
is more efficient than Wee et al.’s algorithm by an
O(logn) factor. For any L, metric, since the
computation of the overall closest pair for n points
can be shown to require nlog#) time (see, for
example [3]), our algorithm is asymptotically opti-
mal for any constant p=1.

Like Wee et al.’s algorithm [10], our algorithm
divide-and-~

conquer and searching in totally monotone matrices

uses the following two paradigms:

[1]. We believe that our algorithm should work
quite well in practice even for small values of n
constants in its time

because the associated

complexity are [airly low, and because it does not

o] 83+ UH

Vo A 2 AT 65

follow a locus—based abproach. Thus, in this re-
gard, our algorithm differs from most previous
algorithm because they usually rely on the com-—
putation of some kind of a Voronoi diagram.

This paper contains five sections. Section 2 gives
some preliminaries, sections 3 and 4 give the divide
and conquer algorithm for solving the SARNN
problem, and section 5 concludes with remarks and
open problems.

2. Preliminaries and Definitions

We use d(s,® to denote the distance between
points s and ¢ under any chosen L, metric. Let
a(p) denote the closed region between the two
rays in directions #» and » from a point p that
form an acute angle, a=1[r,r]. Let d(p, 9 bhe
dlp.9=dp, e if

A point ¢=S is said to be

defined as g=a(p) " and
d(p,a) =, otherwise.
p=S if and only if

reS—{.

an e-nearest neighbor of
gea(p) and dfp, @<d,(p, 7, for any
We denote the e—nearest neighbor of 2 in S by
Nearest £p,S). Let let ARNNLS)

directed graph on vertices S with the edge set
{(p, Nearest,(p,S)Ip=S}. When e is clear from the

context, we will denote ARNN,(S) by ARNNS). For
a k& equi-partition A ,={[2in/£,2(i+)zl K | 0<i<k}
of [0,2x1, let NNWS) denote the directed graph on

denote the

vertices S with the edge set HEUA/ ARNN,(S). Let

the symmetric NN (S) denoted by RSNN(S) be the

(p,9) such that (p,q) and (g,
belong to NNK(S). Then, Wee et al. [8] have

RSNN(S)

set of all pairs

shown that satisfies the following
inclusion:
MST(S) S RNG(S) S RSNN (S
with %£=8 for any L, metric. In view of this
and for the sake of simplicity, we only show how
to compute RSNN(S) for %2=8 and we omit the

subscript, k, in sections 3 and 4.

3. Geometric Characterizations of SAR
Neighbors

66 ARASNB =R Al2F H o2 A 28 A A 2 5.(20012)

Given a set S of # planar points, we first sort
the points with respect to increasing x-coordinates
and store this list in an X-array and then sort the
points with respect to increasing y-coordinates and
store the resulting list in a Y-array. Since this
sorting is done only once during the entire
execution of the algorithm, from now on, we shall
assume that we have the sorted order of the points
with respect to both directions.

Let the 8 octants of the plane be denoted by
North-East, East-North, East-South, South-East,
South-West, West-South, West-North, and North-
est; hear, the East-North and the West-South
/4, 7/2] and

[57/4,37/2], respectively. Furthermore, we assume

octants denote the angular ranges

that for each point of S, its L; nearest neighbor
in each of its 8 octants, is already available. This
can be achieved, for example, by using Guibas and
Stolfi’s algorithm [5] which computes the nearest

neighbor in the L, metric for each of = given

points, in &(xnlogn) time.

g
.
.
v b
6 L,
U5 // Uy
o
"
s
v 6
;
U3 %
y Us
, Uy
Uy e
.
v .
1 / o*3
S M
7
.
»on

Fig. 2 Partition S into U and V with respect to 7

If (p,@ =RSNM(S), and if p lies in the East—
orth octant of ¢ then ¢ must lie in the West-
outh octant of p. Furthermore, it is easy to verify
that if an algorithm computes all pairs of RSNN(S)
that belong to these octants then by rotating the
points appropriately and by executing this algorithm
four times, we can obtain all the pairs belonging to
RSNN(S). Consequently, in the following, we only

compute the pairs, (p,q)=RSNN(S) such that p is

the closest point to ¢ in the East-North octant
g is the closest
point to » in the West-South [57/4,37/2] of ».
We denote the set of these pairs by ENWS(S), and
we provide an algorithm to compute ENWS(S) for

[7/4,7/2]1 of ¢, and, conversely,

the L, metric in O(nlog#) time.

Let S={py, 85,0, and let the coordinates of

#, be denoted by (x;,v). Let! denote a straight

line, with slope equal to 1, that splits the points in S

into two roughly equal halves, U={wu,, ... ,u,} and

V={vi, ... ,v, where p=1n/21, g=n—1[n/2]
the points of U (and the points of V) occur in
increasing order of y-coordinates, the points of U
lie to the right of 7, and the points of V lie to
its left. See Figure 2. (For the sake of simple
exposition, we assume that no point of S lies on
the dividing line; the algorithm can be easily
extended for the general case and its asymptotic
time complexity still remains the same but its
description becomes more complicated.)

Then, it is easy to see that ENWS(S) can be
computed by independently computing ENWS(D),
ENWS(V),

symmetric pairs for

and by computing the restricted
U and V, where the rest-
ricted symmetric pair is defined as follows: a pair
of vertices

ucelU and v;eV are said to form a

restricted-symmetric pair if »; is the nearest
neighbor of z; among all vertices in S that lie in
the West-South octant of #, and, similarly, if «; is
the nearest neighbor of v, among all vertices in S
that lie in the East-North octant of »; Now, if
T(n) denotes the time to compute ENWS(S) for
the n given points and if D(p,q) denotes the time
to compute the restricted-symmetric pairs for U
and V then it can be verified that T(»)<2T(#/2),
+D(p,) and T(2)=c.

D(p,q)=0(+q), then
g=n—1[#n/21, we have

Then, if we can show that
because p=1[#/21,
D(p, = Op+a)=0(n).
T(n)= O(nlogn).
this in view, we provide below a subrouiine that

This, in turn, implies Keeping

computes all restricted symmetric pairs for U and

CESL ERER

o

0]-& 3]

il

V in Op+eq This

computes the restricted~symmetric pairs for U and

time overall. subroutine
V by spending O(p+¢) time and transforming this
problem to that of finding the minimum entry of
each row of a special kind of a array, called a
(Cf. section 4.) Since the

minimum entry in each row of this array can be

totally monotone array.
computed in linear time by using the prune-
and-search algorithm given in [2], this subroutine
can be executed in linear time.

In order to transform the problem into that of
finding the minimum entry in a suitable totally
monotone array, we need the following defiliitions
and lemmas: A point p is dominated by ¢ if »
lies in the West-South quadrant of g¢. A point
peS is a maximal(minimal) element of S if p is
not dominated by (does not dominate) any ‘other
: Maxima(S) (and

Minima(S)) to denote the set of maximal (and

point ¢ in S We use

minimal) elements of S.
Lemma 3.1° let wu;,u=U be any two points

such that z; dominates w; and let v, be any
point in V such that #; and =; lie in East-North
and the y-coordinate of v, is no

Then, v,

octant of »,
higher than of «, cannot form the
symmetric-restricted nearest neighbor of #, among
all points in S.

Proof: Since v, is to the left of 7 and «;'is to
its right, and since the y-coordinate of v, is no
more than that of u«; #, dominates v, Now, since

u; also dominates u,, it is easy to verify that the

angle (u;, u;, vy is at least 135 . This implies that
the distance between u, and u; is less than that
between u; and v, . [

Lemma 3.2: For the L, metric, if among all the
points in S, the nearest West-South neighbor of a
point in U, also belongs to U then, for any L,
mefric where p=2, the nearest West-South neighbor
for that point in U must also belong to U. ‘

Proof: We only give the proof for the L,

metric; the extension to an L, metric is easy and

i)
o
o
\uj
=

F AmAG 2HA AL 67

omitted. Let u, belong to U and let #;=U be the
nearest West-South neighbor of #; in the L, met-
right-angled triangle

ric. Then, the isosceles

(shown in figure 3) that has a 45° angle at =, and
that has w, on the side opposite to u, is empty.
Consider the lower half of a circle that is centered
at u; and that has a radius equal to @(«,, u;). Note
that any point that is contained in the lower half of
this circle, is either also contained in the isosceles
triangle or it lies to the right of the dividing line
7. Since the nearest West-South neighbor ‘of u,
in the L, métric must lie either inside or on the

periphery of this circle, the lemma follows. []

Fig. 3 An illustration of Lemma 3.2.

Lemma 3.3: Let w;, u;, u; € U such that u;
dominates ‘ul- and the y-coordinate of u; is ‘no less
than that of #, And, let v, be any point in V
whose y-coordinate is less than that of u«, Then,
(2, vy) cannot form a restricted-symmetric pair
for U and V.

Proof:
observe that if (uy, v, form a restricted-symmetric

(Refer to Figure 4.) From Lemma 3.1,
pair for U and V then wu; cannot dominate ;.
Consequently, in the following discussion, we will
assume that #; lies to the left of u; and that
(u;,vy) forms a restricted symmetric pair for U
and V. Using these facts, we will show that
d vy u) <d vy, u), thereby,

contradiction. From Lemma 3.2, it follows that u;

achieving a

68 ARAEI=EA A2 B o|® A 28 A A 2 B(2001.2)

must have an L; restricted nearest neighbor, say
v, in V. Consequently, the isosceles right-angled
triangle that has a 45" angle at #; and that has
v,, on the side opposite to u,, is empty. We will
refer to this triangle (b, u«,,%); the right-angle in
this triangle is at vertex h. Consider the circle that
is centered at u,; and that has a radius equal to
d(u,;,b), where b is the leftmost vertex of the
triangle (b, u,;, k). We claim that », must lie in
this circle. To prove this claim, we observe that
du;, vy)<du, b, and if v, did not belong to
the lower half of this circle then d(v,, u) <
d uy, vy). Next, let 7] be the line with slope equal
to 1 that passes through v, and let this line
intersect the triangle (&, u, &), at points ¢ and g,
such that », is closer to ¢ than to a Then,
observe that (v, ¢) <d(c,a). (This is because if z
denotes the point of intersection of 7, and a
vertical line going through & then the ftriangle
(a,b,2) is a right-angled, isosceles triangle, and
the point ¢ is the mid-point of the edge az.)
vy,)< (1/2) « dvs, @) and since u,
lies to the above and to the right of a, it follows
that d(v,, ¢)<(1/2) « d(vy, u)). Next, let w denote the

Consequently,

intersection point of a horizontal line through v,

with the line #k Then, the triangle (w,c, v:) is

T //,7
et S

5} a 459 U

(™

Portion of circle
with center=U «
and radius =
AU, by

Fig. 4 An illustration of Lemma 3.3.

also an isosceles, right-angled triangle. This implies
that (v, w)=V2 - d(c, vy). Finally, since u; domi-
nates #;, and since the y-coordinate of v, is no
u, must lie in the triangle

du;, v <

more than that of
(v, c,w). This, in turn, implies that
vy, w), ie, dlu, v)<V2-dlv, o). But this implies
that dle, v <d(u,vy). [

4. An Algorithm for Computing RSNN

Let 7 denote the dividing line that was defined

in section 3 and let 7 partition the given set S
U and V.

V' whose

into two roughly equal-cardinality sets,
Then,

y~coordinate is not greater than that of u;=U, lies

observe that any point of
in the West-South octant of x,; In the following,
we first show that U (and V) can be partitioned
into {U7,...U,} (and {V,,...V,)}), respectively so
that if €U, vV, and i#/ then (%, v) cannot
U and V.
Here, some of the subsets in the two partition can

form a restricted-symmetric pairs for

be empty. Using these partitions, we then show
that the
computed by the monotone matrix searching in

restricted symmetric pairs can be

linear time. For 1<i<p, the top anchor of u;,
denoted by fop(u;), is defined to be the index of
the highest point of V that belongs to West_South
quadrant of «, (If there exists no such point of V,
then we let fop(u;)=0, there v, is dummy point.)
Also, define the bottom anchor of wu; denoted by
boxu,), as follows: bot(u;) = botu;~;) if u; does
bot(u,)

shows that

not dominate wu,.;; otherwise, equals
top(u;—1).

bofu;) < top(u;), and that the bottom and top—

Now, a simple analysis
anchors for all points in U can be easily computed
in O(p+q time. The
anchors is given by the following Lemmas:

importance of the two

Lemma 4.1:

For 1<i<p, bofu,)<bot(#u,+\).

Proof: Lemma 4.1 follows by simply using the
fact that bou,) < top(w;) and by using the

definition of the bottom-anchor of =, [

gz

)

@

to

el

Lemma 4.2° For 1<k<q and 1<i<p, (u;, v, can

form a restricted symmetric neighbor for U and V if
(a) k<top(u;) and
(b) B>bor(u,).
Proof: It k> top(u,) then v, does not lie in the
West-South Now, ‘

quadrant of .. inequality(b)

holds trivially if &of(x;,) = 0. Consequently, we
assume that boXu;)=1. In this case, it follows from
the definition of the bottom anchor that there exists

an m<i such bou;)= bou,,)= top(u,—1). Consequ—

ently, if m<i and A<boi(u;,) then v, is below

#m-1, and from Lemma 3.3, it follows that (u; v
cannot form restricted symmetric pairs for U and

V. On the other hand, if m=i then (u, v, cannot

form a restricted symmetric pairs for U and V
because of Lemma 3.2. [

To exploit the above lemmas, consider the
alternate scenario in which there is a pxg array,
M={‘m(i,k)}, such that forl<i<p and 1<p=q,
m(i, k), equals the Euclidean distance between u;
and v, if both inequalities (a) and (b) given in
Lemma 4.2 hold, and m(i, k)= oo, otherwise. Then,
We have:

Lemma 4.3 Forl<i<p and 1<k<q, (u; vy can

form restricted symmetric pairs for U and V only
if mli, B is the smallest entry in the i-th row and
in the k-th column of M.

Proof: From Lemma 4.2, it follows that only
those pairs (., v) need be considered for
restricted symmetric pairs for U and V that obey
(a) and (b)

Clearly, among such pairs, the point of

(given in Lemma 4.2).
V' that

forms a restricted symmetric pair with z, is the

inequalities

one that is the closest to it in its West-South
octant. But this corresponds to the minimum entry
(or a minimum entry if there are several minima)
in the i~th row of M. Similarly, the vertex of U
that forms a restricted symmetric pair with v, is
the one that is the closest to it, in its East-North
octant. But this corresponds to the minimum entry

(or a minimum entry if there are several minima)

o] &% %

% A=A 2HF ALY 69

in the k-th column of M. []

Observe that even if m(:, &) is the smallest entry
m the i-th row and in the k-th column of M,
constitute a restricted

(u;,v) may still not

symmetric pair for U and V. This can happen
because either the West-South nearest neighbor of

u; belongs to U or it can happen because the

East-North nearest neighbor of v; belongs to V.
However, if the East-North nearest neighbor of v,

belongs to U, and if m(i, k) is the smallest entry
in the i-th row and the k-th column of M then

Lemma 4.3 states that (u, vy, in fact, constitute a

restricted symmetric pair for U and V.

In order to explain our algorithm further, we
need to explain the structure of M in detail. First,
let us consider the set of entries that are infinite
and that arise because inequality (a) does not hold.
From the definition of top-anchor, it follows that if,
1<i<p, k> top(u;) then k>

for some i where

top(w;—y for 0=<7r<i—1. Consequently, if the
(i,k)-th entry of M is o because k> fop(u) then
the (i—v, B)-th entry is also oo for 0<r<i—1.
Furthermore, since both sets U and V have been
sorted with respect to the y-coordinates, if the
(i, B)-th entry is oo because k> top(w;) then so is
the (¢, 8)-th entry for k<s<g Consequently, for
between 1 and p, the
M-, = for all values of 0<r<i—1 and g=s=

top(u) +1.

any i set of entries

&%

Z |

Fig. 5 o entres in M= {m(i, B}

70 AR NI =FA A" B ol A 28 A A 2 520012

This implies that the entries that are o and
that arise because k> fopluy formm a contiguous
block of entries in M, the periphery of this block is
a right-downward staircase in the top-right corner
of M. In the i-th row, the index of entry that is
o and that lies on this periphery is simply
G, top(u)+1). (Such
shaded in figure 5.) Also, by using Lemmas 4.1

entries have been heavily

and 4.2, it can he verified that the
w(i, k), that k<bolu; form a

oo entries,
arise because
contiguous block of entries in M. The periphery of
this block is a right-downward going staircase in
the bottom-left corner of AM; in the i-th row the
index of the entry that is oo and that lies on this
periphery is simply (7, bo(#)). (Such entries are
shaded lightly in figure 4.)

1<i<p, let s(z) be defined

such that m(7,s(7)) contains the minimum entry in

Lemma 4.4: For

the i-th row of M. (If many entries of the i-th
m((i, (1))

denotes the leftmost such entry.) Then, for all ¢

row contain the minimum value then

between 1 and p, s(&) can be computed in O(p+q)
time. Similarly, for1<j<g let »(j) be defined such
that #(~(/),7) contains the minimum entry in the
j-th column of M. (If many entries of the j-th
column contain the minimum value then me{#(7),7)
denotes the topmost such entry.) Then, for all j
between 1 and ¢, ()
O(p+¢q) time.

Proof: We only show that the minimum entries

can be computed in

in all rows of M can be computed in O(»+¢g) time.
Similar arguments also apply for computing the
minimum entries in all columns of M. In other to
prove that the minimum entries in all rows of M
can computed in O(p+gq) time, we first recall the
following definitions from [1]: a array consisting of
real entries is called monotone if the minimum
entry in its i-th row lies below or to the right of
the minimum entry in the (i~1)-st row. (If a row
has several minima then we take the leftmost one.)
Further, a array is called totally monotone if each
of its 2X2 subarray (ie., if each of its 2X2 minor)
is monotone. In [1], Aggarwal et al. showed that if

a gXh array is totally monotone and if the

order-relation between any two entries of M can
be computed in constant time (e, for any two
entries of M it can be determined in constant time
whether one is greater than the other), then for all
[between 1 and p, sG)
X g+h time in the RAM model. Consequently,
Lemma 4.4 can be established by showing that M

can be determined

is totally monotone and that the order-relation
between any two entries of M can be determined
in constant time. In view of this, we first show
that the order-relation between any two entries in
M can be computed in constant time and then we
establish the total monotonicity of M.

The (,k)-th entry of M is oo if and only if
either Ak<bo u;) or k>top(u,). Now, given bot(u,)
and fop(u;) for 1<i<p, whether or not this entry
is o can be checked in constant time. Further, if
the (7, B)-th entry is not infinity then this entry is
the Euclidean distance between wu;=U and v, V.
Consequently, it can be easily verified that the
order-relation between any two entries, say w7, £)
and m(j,), can be determined by computing the
square of the distance between z, and v, by
computing the square of the distance between u;
and v, and by comparing these quantities. Since in
the RAM model, the square of a distance (n L,
metric) can be computed in constant time, it follows
that the order-relation between any two entries of
M can also be computed in constant time.

For establishing the total monotonicity of M,
consider a 2X2 subarray that is formed by rows i
and j and columns k and /, such that 1<;{i<p and
1<k{i<q. If the (4, A)-th
because of the structure of M, either the (7, £)-th

(7, D-th entry

Similarly, if the (7,)-th entry is oo, then because

entry is oo, then

entry or the must also be co.

of the structure of M, either the (7, £)—th entry or
the (7, H-th entry must also be co. Further, if the
(i, B)-th entry or the (Jj,))-th entry isco then
Lemma 44 follows easily. Consequently, we can
assume that neither of the four entries of this 2X2
subarray is cc. Now, by using Lemma 4.2 and the

definitions of the bottom and top anchors, it follows

wx 9Y 4L o8 ¢

4

that #; does not dominate %, », does not

dominate v, and both v, and v, lie in the West-
South octant of u; and u; Hence, it is easy to
verify that u;, u, v and v, form the points of a
convex quadrilateral in clockwise order. Since the
sum of the lengths of the opposite sides of a
convex quadrilateral is less than the sum of the
lengths of its diagonals, it follows that
Ay, v +du,v) = du;v)+ dui,v,). But this im-
plies that inequalities d(w;, v)> du;, v) and d(u,, v)>
d(u;, vy) cannot hold simultaneously. Consequently,
M is totally monotone. []

Once the minimum entry in each row and in
each column of M is found, then from these p+g¢
entries, the entries that are simultaneously the
minimum in their rows and columns, can be
computed in linear time. This computation simply
involves checking whether the minimum entry in a
givenn row is also a minimum entry in its column.
Furthermore, once these entries are known, let
m(i, k) denote once such entry. Then, we check
whether m(7, &) is less than the distance between
its West-South

u; and neighbor in U, and

similarly, for v, Indeed, if m(i, £) is less than both
these distance then (w,,v,) is restricted symmetric
pair for U and V. Clearly, this computation also
takes

steps of this algorithm took at most O{p+ q)= O(n)

O(p+q) time, and since all the previous

time, D(p, q)= O(xn). Consequently, we have:

Theorem 4.1: Given a set S of n planar points,
in the L, metric,c, KSNN(S) can be computed in
O(nlog») time. [

To extend the above algorithm for an arbitrary
L, metric, observe that the triangle inequality
holds for any L, metric and that the lemmas
given above hold for all values of p. Furthermore,
the array M that is given in Lemma 4.4 remains
totally monotone when the finite entries represent
the corresponding distances in the L, metric.
Consequently, we have:

Theorem 4.2° Given a set S of n planar points,

the West-South nearest neighbor for every point in

WY A =5 A 71

S (in the L, metric with »=1), can be computed
in O(nlogn) time. Consequently RSNN(S) c¢an be

computed in O(rlogn) time in the L, metric.

Furthermore, the bound for this algorithm is
optimal (within a multiplicative constant) for any
constant value of .

Proof: Since the array M is totally monotone and
since the order-relation between any two entries of
M can be determined in O(») time, we can invoke
arguments similar to those given in Lemma 4.2,

and compute the restricted symmetric pairs for U

D(p, 9=
O(n) and T(#%)= O(nlogn). Finally, since the overall

and in V in O(x) time. Consequently,
closest pair of points among all pairs in S (in the
L, metric), can be computed by executing at
most 4 times, any algorithm for solving West-
South nearest
2nlogn)
computing the overall closest pair, our algorithm for

neighbor problem, and since

is a lower bound on the time for

the solving West-South problem optimal within a
multiplicative constant. [_]

5. Conclusion

@(nlogn) worst case time

algorithm for the planar SARNN problem .under

We presented a

any L, metric. This algorithm uses.only divide-
and-conquer and the technique of searching in
totally monotone matrices. The approach used here
is reminiscenf of that used by Aggarwal et al. [2]
for computing the closest visible pair of vertices
between two simple polygons. This algorithm is
asymptotically optimal for any constant p in the
algebraic computation tree model, and unlike: some
previous algorithms, it does not compute any kind
of a Voronol diagram. In fact, the constant inyolved
in the "Big-Oh”
Consequently, we believe that this algorithm may

notation seems quite ‘small.
run quite well in practice. Finally, since the set

RSNNg(S) contains O(#) pairs and since MST(S)
is contained in RSNNg(S) for any L, metric (see

Section 1 and [6]), we can apply Cheriton and
Tarjan’s [3]

spanning tree in

algorithm to compute the minimum

O(nlogn) additional - time.

72 ARG =EA A2 B o2 A 28 A A 2 F(200L2)

Consequently, our algorithm also yields an O(#nlog)
algorithm for computing the Euclidean Minimum
Spanning Tree in the L, metric.

An interesting unresolved question is whether the
ARNN problem (in the L, metric for a constant
value of) can be solved in O(nlogn) time. An-
other unresolved question is whether the minimum
spanning tree {even in L, metric) can be solved in
O(logn) by using # processors on a Parallel
Random Access Machine (PRAM) model. Finally,
RNG(S)
can be computed from RSNN3(S) in O(nlogw).
(See also [7].)

the third unsolved problem is whether

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor,
and R. Wilber, "Geometric Applications of a
Matrix-Searching Algorithm,” Algorithmica vol. 2,
1987, pp. 195-208.

[2] A. Aggarwal, S. Moran, P. w. Shor, and S. Sur,
“"Computing the Minimum Visible Vertex Distance
Between Two Polygons,” in: Proc. on the
Workshop on Algorithms and Data Structures,
Lecture Notes in Computer Science, (Eds. F.
Dehne, J. R. Sack, and N. Santoro), Springer
Verlag, 1989, pp. 115-134.

[3] M. Ben-Or, "Lower Bounds for Algebraic
Computation Trees,” in: Proc. of 15th Annual
ACM Symposium on Theory of Computing, 1983,
pp. 80-86.

[4] D. Chriton and R. E. Tarjan, “Finding Minimum
Spanning Trees,” SIAM J. on Computing Vol. 5,
No. 4, 1976, pp. 724-742.

[5] K. Clarkson, “Approximation Problems for Short—
est Path Motion Planning,” in’ Proc. 19th Ann. ACM
Symp. Theory of Computing. 1987, pp. 56-65.

[6] L. J. Guibas and J. Stolfi, “On Computing all
North-east Nearest Neighbors in the L, metric,”
Info. Process. Lett. Vol. 17, 1983, pp. 219-223.

[71 J. Katajainen, "The Region Neighborhood Graphs,
in the L, metric,” Computing Vol. 40, 1988, pp.
147-161.

[8] K. J. Supowit, “The Relative Neighborhood Graphs
with an Application to Minimum Spanning Trees,”
J. of ACM, Vol. 30, 1983, pp. 428-447.

[9] Y. C. Wee and S. Chaiken and S. S. Ravi, "Recti-
linear Steiner Tree Heuristics and Minimum
Spanning Tree Algorithms Using Geographic

Nearest Neighbors,” Algorithmica 12, 1994, pp.
421-435.

[10] Y. C. Wee, S. Chaiken and D. E. Willard, "On the
Angle Restricted Nearest Neighbor Problem,”
Information Processing Letters, Vol 34. 1990, pp.
71-76.

[11] A. C. Yao, "On constructing Minimum Spanning
Trees in k-dimensional Spaces and Related Pro-
blems,” SIAM J. on Computing, Vol. 11, 1982, pp.
721-736.

19828 129 State Univ. of NY at
Albany FARMAARsR Gka) 1984 129
State Univ. of NY at Albany HAAxk
ghal AA)L 1989 129¥ State Univ. of
ﬂ NY at Albany AAAAEF upx} 1990

: @39 ~ 19959 39 HAELIed 2
YPYs A7 FAATFD 19959 49 ~ 19983 29 &
AR FRASE AGER 22 1998 39 ~ HA o}
T FHAAFEZHE Zuf BYPEE AFE

a#F2 2 Computational Geometry

