A Study of Optimal Ratio of Data Partition for Neuro-Fuzzy-Based Software Reliability Prediction

뉴로-퍼지 소프트웨어 신뢰성 예측에 대한 최적의 데이터 분할비율에 관한 연구

  • 이상운 (국방품질관리소 항공전자장비 및 소프트웨어 품질보증 담당)
  • Published : 2001.04.01

Abstract

This paper presents the optimal fraction of validation set to obtain a prediction accuracy of software failure count or failure time in the future by a neuro-fuzzy system. Given a fixed amount of training data, the most popular effective approach to avoiding underfitting and overfitting is early stopping, and hence getting optimal generalization. But there is unresolved practical issues : How many data do you assign to the training and validation set\ulcorner Rules of thumb abound, the solution is acquired by trial-and-error and we spend long time in this method. For the sake of optimal fraction of validation set, the variant specific fraction for the validation set be provided. It shows that minimal fraction of the validation data set is sufficient to achieve good next-step prediction. This result can be considered as a practical guideline in a prediction of software reliability by neuro-fuzzy system.

본 논문은 미래의 소프크웨어 공장 수나 고장시간 예측 정확성을 얻기 위해, 뉴로-피지 시스템을 이용할 경우 최적의 검증 데이터 할당 비율에 대한 연구이다. 훈련 데이터가 주어졌을 때, 과소 적합과 과잉 적합을 회피하면서 최적의 일반화 능력을 얻기 취해 Early Stopping 방법이 일반적으로 사용되고 있다. 그러나 훈련과 검증 데이터로 얼마나 많은 데이터를 할당갈 것인가는 시행착오법을 이용해 경험적으로 해를 구해야만 하며, 과다한 시간이 소요된다. 최적의 검증 데이터 양을 구하기 위해 규칙 수를 증가시키면서 다양한 검증 데이터 양을 할당하였다. 실험결과 최소의 검증 데이터로도 좋은 예측 능력을 보였다. 이 결과는 뉴로-퍼지 시스템을 소프트웨어 신뢰성 분야에 적용시 실질직언 지침을 제공할 수 있는 것이다.

Keywords

References

  1. D. Nauck, 'Neuro-Fuzzy Systems: Review and Prospects,' Proc. 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT '97), Aachen, pp.1044- 1053, 1997
  2. D. Nauck and R. Kruse, 'A Neuro-Fuzzy Approach to Obtain Interpretable Fuzzy Systems for Function Approximation,' Proc, IEEE Conf. on Fuzzy Systems, Anchorage, AK, pp. 1106-1111, 1998 https://doi.org/10.1109/FUZZY.1998.686273
  3. 이상운, '뉴로-퍼지 소프트웨어 신뢰성 예측,' 정보과학회 논문지(B), 제27권 제4호, pp.393-401, 2000
  4. C. M. Bishop, 'Neural Networks for Pattern Recognition,' Oxford University Press, 1995
  5. V. Vysniauskas, F. C. A. Groen, and B. J. A. Krose, 'The Optimal Number of Learning Samples and Hidden Units in Function Approximation with a Feedforward Network,' Technical Report, Dept. of Compo Sys, Univ. of Amsterdam, CS-93-15, 1993
  6. S. Amari, N. Murata, K. -R, Muller, M. Finke, and H. Yang, 'Asymptotic Statistical Theory of Overtraining and Cross-Validation,' IEEE Trans. on Neural Networks, Vol.8, No.5, pp.985-996, 1997 https://doi.org/10.1109/72.623200
  7. E. B. Baum and D. Haussler, 'What Size Net. Gives Valid Generalization,' Neural Computation, Vol.1, pp.151-160, 1989
  8. S. Bos, 'How to Partition Examples between Cross- Validation Set, and Training Set ?,' Lab. for Information Representation, RIKEN, 1996
  9. A. R. Barron, 'Approximation and Estimation Bounds for Artificial Neural Networks,' Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pp.243-249, 1991
  10. A. R. Barron, 'Complexity Regularization with Application to Neural Networks,' Nonparametric Foundation Estimation and Related Topics, Roussas G., Editor, Kluwer Archademic Publishers, pp.561-576, 1991
  11. hite, 'Connectionist Nonparametric Regression : Multilayer Feedforward Networks Can Learn Arbitray Mappings,' Neural Networks, Vol.3, pp.525-549, 1900 https://doi.org/10.1016/0893-6080(90)90003-4
  12. D. Barber, D. Saad, and P. Sollich, 'Test Error Fluctuations in Finite Linear Perceptrons,' Neural Computation, Vol.7, No.4, pp.80-821, 1995
  13. S. Haykin, 'Neural Networks: A Comprehensive Foundation,' Macmillan Publishing Company, 1994
  14. M. P. Lyu, 'Handbook of Software Reliability Engineering,' McGraw-Hill, 1995
  15. N. Karunanithi, D. Whitley and Y. K. Malaiya, 'Prediction of Software Reliability Using Connectionist Models,' IEEE Trans. Software Eng., Vol.18, pp.563-574, 1992 https://doi.org/10.1109/32.148475
  16. N. Karunanithi, D. Whitley and Y. K. Malaiya, 'Using Neural Networks in Reliability Prediction,' IEEE Software, Vol.18, pp.53-59, 1992 https://doi.org/10.1109/52.143107