Abstract
Recently, high-dimensional index structures have been required for similarity search in such database applications s multimedia database and data warehousing. In this paper, we propose a new cell-based signature tree, called CS-tree, which supports efficient storage and retrieval on high-dimensional feature vectors. The proposed CS-tree partitions a high-dimensional feature space into a group of cells and represents a feature vector as its corresponding cell signature. By using cell signatures rather than real feature vectors, it is possible to reduce the height of our CS-tree, leading to efficient retrieval performance. In addition, we present a similarity search algorithm for efficiently pruning the search space based on cells. Finally, we compare the performance of our CS-tree with that of the X-tree being considered as an efficient high-dimensional index structure, in terms of insertion time, retrieval time for a k-nearest neighbor query, and storage overhead. It is shown from experimental results that our CS-tree is better on retrieval performance than the X-tree.
최근 고차원 색인 구조들이 멀티미디어 데이터베이스, 데이터 웨어하우징과 같은 데이터베이스 응용에서 유사성 검색을 위해 요구된다. 본 논문에서는 고차원 특징벡터에 대한 효율적인 저장과 검색을 지원하는 셀-기반 시그니쳐 트리(CS-트리)를 제안한다. 제안하는 CS-트리는 고차원 특징 벡터 공간을 셀로써 분할하여 하나의 특징 벡터를 그에 해당되는 셀의 시그니쳐로 표현한다. 특징 벡터 대신 셀의 시그니쳐를 사용함으로써 트리의 깊이를 줄이고, 그 결과 효율적인 검색 성능을 달성한다. 또한 셀에 기반하여 탐색 공간을 효율적으로 줄이는 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 삽입시간, k-최근접 질의에 대한 검색 시간 그리고 부가저장 공간 측면에서 성능 비교를 수행한다. 성능비교 결과 CS-트리가 검색 성능에서 우수함을 보인다.