662

1. Introduction

ARHHY =LA 2TEHS] D 25 2 28 A A 9 HA0LY)
DNF =2l dell dist 84 B3 dwalZ
(An Efficient Falsification Algorithm for Logical
Expressions in DNF) -

.
2 1 4

(Gyo Sik Moon)

2 9o AL uFHe PAE BIL AFSE BAY 2L WS 2] gEd ME(EE 2T
4 ABE 9T 9Y N7 GuPEe FsHA 9 oA 2% dnATEL BT D Ao
U IHE E8) S0 @ Ro) hy-Relh tnEe] SnelEEL oW AEd sl takw Qe
e WS B ANE Bel B Ao, FRA 2 Q6] dsd o IRAFEL olelgs 4
A5y Yok o] =RoME DNFIIQEEYE B88 9848 B 2ot A28 74Tes
A ONEE NS 9F T e AR 9F 2ueEe AN, B9, AL Lz QB
% RS FHRG. ALY YT WE BY 4 BANA o207 YL Fale] W o
48 AUITNES greedy WU IO S Qirh A W 2 P 29 Wz EA A
¢ UFHE A8H 45 Bl FW 0Gm?) AL ANAT, AN 42 WA Afoln me T
9 F)gele

Abstract Since the problem of disproving a tautology is as hard as the problem of proving it, no
polynomial time algorithm for falsification(or testing invalidity) is feasible. Previous algorithms are
mostly based on either divide-and-conquer or graph representation. Most of them demonstrated
satisfactory results on a variety of input under certain constraints. However, they have experienced
difficulties dealing with big input. We propose a new falsification algorithm using a Merge Rule to
produce a counterexample by constructing a minterm which is not satisfied by an input expression in
DNF(Disjunctive Normal Form). We also show that the algorithm is consistent and sound.. The
algorithm is based on a greedy method which would seek to maximize the number of terms falsified
by the assignment made at each step of the falsification process. Empirical results show practical
performances on big input to falsify randomized nontautological problem instances, consuming O(nm?®)
time, where # is the number of variables and is the number of terms.

backtracking algorithms[2, 3] (i)
algorithms{4, 5, 6, 7] (i)

The {falsification problem is to decide, given an

approaches[8, 9]. Most of the algorithms

graph ~based
logic programming

expression, whether it is a tautology or not. The
difficulty arises from the fact that the problem
involves satisfiability problems or tautology
checking problems which are known to be NP-
complete[1]. Algorithms have been developed to
solve this type of problem, which can be grouped

into a few categories: (i) divide-and-conquer and

T3 8 9 dTrEsdea ddnsd ae
gmoon@taequ-c.ac.kr
=44 20008 78 3¢

ga : 2001d 79 109

shown practical performances on a variety of nput
expressions subject to Input constraints. However,
they have shown difficulties dealing with big‘ input.
The complexity of the problem depends on the

number of input variables in , which the search

space grows exponentially as the number of
variables increases. The input is considered quite
big in the community when the number of

variables is 30 because there can be 2% states at

worst cases. The falsification algorithm may not be

directly compared with other algorithms because of
the scarcity of falsification results. Instead, results
on the falsif.cawon algorithm can be compared with
those from previous works on tautology-related
problems which come up with time/space explosion
when input is big, stated in[2, 4, 6, 10, 11]. This
paper presents an efficient falsification algorithm
showing superior performance on large scale input
expressions using reasonable amount of computing
resources.

Preliminaries

We use truth—functional propositional connectives
as usual. We define individual variables as
E PR each of which value is either true or
false. A literal is a variable or the negation of a
variable. A fterm is a conjunction of literals. A
minterm is a conjunction of # variables with each
variable being negated or non-negated. A term can
be represented by a string of symbols: ap,-,a,,

where

1 : x,occursintheterm
‘a; (1Sz£n)= 0:
d : neither x;nor x, occursintheterm.

x; occursintheterm

We assume that both x; and x, do not occur in
a term. For example, xux;x; is represented by
d1do, n=5. A
{0,1,d} is to be regarded as a term or a

disjunction of minterms for the term depending on

when string composed of

the context. We use «[7] to represent a,.

Definition 1. A unit term is a term which
contains a single literal in . A complete term
with » variables consists only of = occurrences of
the symbol d, denoted by o,, which is often used
to represent a tautology. [

Definition 2. Let a, B be any arbitrary terms.
The position 7 of «, A is called a complementary
position iff aljl#d, 81144, and aljl=1—gLj]
(or, RBlil=1—aljl). @ and
complementary terms iff there is a complementary

A are called

position ;7 and for any other position 4,
alkl=R81k]. (eg, 0dld and 0d0d are

complementary.) A pair of terms is said to be

T aeA e duyd 663

contradictory iff it contains two complementary unit
terms. [] :

The Quine—McCluskey method[12, 13] was the
first algebraic approach to produce a simplified
expression for a Bbolean function. The tabulation
method starts from the list of minterms that
specify a Boolean function and are simplified by
combining two complementary terms. It repeats the
process until new simplification is not possible. The
Merge-Rule introduced in this section has a éimilar
idea 6f combining two terms. But two terms need
not be complementary to be merged. ‘

Definition 3. A merge y of two terms «a and
B is a term such that (1) @ and A have exactly
one complgmentary position and (2) ¥[¢], for each
position ¢, is defined by the Merge Rule shown in
Table 1. y is‘ called an immediate consequence of
two terms «¢ and AB. The merge position of 7 is
the position j in which a1 and A&l are
complementary and 7y[jl=d. []

Definition 4. Let I' be a nonempty set of terms
in DNF

(disjunctive normal form). (I' will be used as such

to represent a Boolean expression
throughout the paper.) Let « and A be two ferms
of I The projection of « with respect to @,
denoted by «"lp, is @"lilg=eld, where i is the
jth position of B whose value is d. The
projection of I' with respect to (3, denoted by

', is the set of projections { a7 PRIREE

el s}, Where a¥ , is the projection of a;

B for each a,»(¢,8)e['.‘ We

abbreviate a1 5, BT 4, I'"l ,,

with respect to
to a”, g7
I'" respectively if there is no ambiguity. [
Example 1. Let I' = {dddll,1dddl,d001d,0d1d1,
100dd}land 8 = d0dld. By applying the projection
rule, we obtain, 8% = ddd and TI'"| 2 = {ddl,1dl,
d0d,011,104}. [

2. Falsification Algorithm

The goal of a falsification algorithm is to find a

minterm ? which falsifies . A falsification

664 BARASFI=EA ATE o]
algorithm is said to be consistent iff the value of

EaF)
throughout

for a position j will remain unchanged

the

assigned. A falsification algorithm is said to be

falsifying process once it is
sound iff any minterm returned from the algorithm
to falsify the
algorithm is said to be complete iff the algorithm

guarantees input. A falsification
guarantees to construct a falsifying minterm for
any nontautological expression.

To show that I' is not a tautology, it is enough
to find a minterm such that it cannot be satisfied
by I. To do that,

algorithm named Algorithm F which tries to

we design a falsification

construct a falsifying minterm in the linear time
under some conditions stated in Lemma 1, which is
a preliminary work to provide the major part of the
Algorithm Falsify.

Algorithm F

Input’ a set, I', of terms, satisfying
(1) for each term ae=I', a0, wheren is the
number of variables, and
(2) for each pair of termse,perl,
cannot be merged.
QOutput: a minterm 7 which is not satisfied by I
Procedure’
dy = I
1.0l < 0;
k< 0;
while 4, is not empty do
ke k+1;
A"‘{Q"C?EA/E_I, alk :1}:

if A is not empty, then K « 0;

a and B

else begin
A—{alasd, 1, alkl =0});
E — 1;
end;
end.if;
Adp—dyp — A,
end.while;
return 4
end,procedure;

Example 2. Let I'= {d0dd1d01d, 1dd0d41011,
dd001ddld, dd00dddll, 1dd011ddd, 1ddddd0l1,

2 S8 A 2BHE A9 IZQN0L

0111d01dd}. Table 2 shows the trace of Algorithm
F on I for constructing 7. [

Lemma 1. let I’ be a set qf terms. The
Algorithm F returns ? if (1) for each term a=T,
a= o,, and (2) for each pair of terms a,fsl, «a
and £ cannot be merged.

Proof. The algorithm removes members of A
from 4,.; at each iteration whenever A @. Thus
as long asA+ @, 4,.; will be reduced to 4,
whose cardinality is less than that of 4,-;. Then,
it is possible that 4, becomes @ at kth iteration
(1<kim).

returns 7. IfA=@ at kth iteration (1=4<#n), then

Hence, the algorithm terminates and
we proceed % to the next position. Suppose we
have just reached the last iteration, where k=n.
Then, it is sufficient to show that 4,= @. Suppose
4, 1s not empty. Then, there exists a term a4,
and we observe:! (i) there is no j<= such that
al7l =1 because otherwise a¢4; (ie, o would be
excluded at step ;). (ii) there is some j<#= such
that a1 =0 Dbecause otherwise a=og,. So, let ;
be the last j<=n such that «l71=0. Then, there
must be another term pg=4;-, such that Alj=1.
For all i<j, Bld+#1, otherwise B#¢4,., because 8
For all j<{k<n,
alkl=d. So, aljl=1—40j] and there are no other

would be excluded earlier.
complementary positions except j. Then, « and 23
can be merged. A contradiction. [

We present a sound algorithm which can be used
efficiently for most of the problem instances,
although it may not be complete because of the
NP-completeness of the falsification problem. The
algorithm is based on a greedy method designed to
find an assignment maximizing the number of terms
falsified by the partial assignment made at each
step of choosing a variable and its truth value. This
can be done by choosing a merge position which is
used most frequently and by assigning the negation
of the truth value which takes place most frequently
on the position. Experimental results show that the

algorithm works efficiently for most cases.

Algorithm Falsify

665

Input’ a set, I', of terms.
Output: (1) returns a falsifying minterm T if it is found.
(2) returns ‘Fail, otherwise.

Procedure: ‘
PO. { Initialization of global data structures }
Let x,, x, be the variables.
Let S={(a,®|a,fel’, aand B can be merged}
R—o; ‘
Hl..wl — d
Pl. { Main Body }
repeat
if there exists a unit term a€S,
then begin

Let j be the position where aljl #d.
U —1—aldl; ‘
end; :
else begin

Let j be the position with the smallest index at which
merge positions take place most frequently for all pairs in S.
Let Ni(w) be the number of occurrences in S of w(=0 or 1)

at position j of distinct terms of S.

if N O) > Ny(D), then HA«1; else 3 <0; endif

end;

end.if;

Perform P3 using H; :
until (S is empty) or (S contains a contradictory pair);
if S contains a contradictory pair, then return ‘Fail’;

else if R is empty, then return &, end.if;
else goto P2;

end.if;
P2 { Call Algorithm F }
Let Rnl Pl { a”I s | aER}.

Call Algorithm F for constructing a minterm { which falsifies R”

for each position j of

HA [, where [is the jth position of T whose value is d.

end.for;
return %,
P3. { Reductions }
Perform reductions on S using 17 as follows:
for each term a o S,

if alil= , then aljl=d; endif
if aljl —1— t[f], then remove a from S; endifs
end.for;

for each member s S,
if s contains a single term 7,
then begin
S—S—{s},
R—R\U{n};
end;
end.if;
end for;

Remove each member of R from R if it appears in a pair of S.

Perform reductions on the set R using tlj] as follows:

for each term @R,
if alil= 1A, then aljl=d, endif
if aljl =1— %, then remove «a from B endif
end,for;
end.procedure;

666 ARAT =74 £AZEHo] R 3§ A 87 A 9 Z(2001.9)

Example 3. Let I'= {dlddl, 0lddd, ddd00,
dd0dl, d0ldd, 1ddd0}. Table 3 shows the trace of
Falsify on I'. The procedure falsifies the set by
making five assignments of truth values to 7 in
which two assignments are made by Algorithm F
at P2. ,

It is obvious that Falsify is consistent. Also it
empty by the

terminates because S becomes

reduction operation at P3 by %[or S contains a
contradictory pair. We show that the existence of a
contradictory pair of unit terms is the necessary
and suffictent condition for the failure of
constructing 7.

Observation 1. If two complementary unit terms
are generated by Falsify, then the two terms must
be paired in S.

Proof. If they were not paired, then they could
not be merged. Then, there must be another
disjoint position j, where both literals on ;j must
have been reduced to d's by Falsify, which is
impossible. [

Upon completion of P1, if both R and S are
empty, then we conclude that 7 falsifies I'. If S is
empty but R is not, R contains those terms that

have not vet been falsified by 7. We then perform
the next part of falsification. Right before P2 is
initiated, the following facts are understood:

Observation 2. For each term e=sR, (1) a#0,,
(2)Vp [Hpl +d=alfl =d], and (3) 3pl Hpl=d
and elpl #d41. [

Observation 3. The remaining terms of the set
R cannot have a merge among them when P2 is
initiated.

Proof. Let @', A be any two remaining terms
of R when P2 is initiated. Let « (8) be the
original term for « (8') respectively. f « and 8
(&, 8) would bhe

removed from S by a reduction at P3 and at least

can be merged, then the pair

one of 2 and B would be removed from R hefore
P2 is initiated. So, @ and £ cannot be merged. If
e and £ have no complementary position, then @

and 8 cannot be merged. If ¢ and B have two or

more complementary positions, there are two cases
to be considered: (i) If there is a complementary
position p such that 7[s] #d, then one of ¢ and
8 would be removed from R before P2 is
initiated. (ii) If, for each complementary position p,
3l =d, then o and B cannot be merged. []
Observation 4. At P2, We observe: (1) For each
a”l ~= R7”| ~ , a"| ~ is not a complete

term. (2) Each pair of terms of R7| &~ cannot be

merged. [

Theorem 1. (Soundness) If Falsify returns 7,
then I" does not satisfy 7.

Proof. Directly from Observations 1 to 4 and
Lemma 1. [

We believe that Falsify is not complete because
the problem of searching a falsifying minterm is as
hard as the original problem of checking the
tautologyhood in general, while the time complexity
of Falsify is only O(nm?), where #» is the number
of variables and m is the number of terms of I
So, ‘Tail' returned from the algorithm does not

necessarily imply that I' is a tautology.

3. Experimental Resuits

The Falsify algorithm was implemented in C on
an HP 9000 workstation to test the efficacy of the
algorithm on a wide range of random expressions.
The results demonstrate practicality and efficiency
of the algorithm. The algorithm is especially strong
on big inputs with more than 20 variables.

1. Parameterized random sets of problem

instances

The popular model[6, 11] was used to construct
random sets of problem instances in DNF. The
popular model generates random expressions using
the parameters: v(the number of variables), f(the
number of terms), and p(the probability that each
literal appears in a term). A ferm is generated
randomly by independently selecting the 2v literals
with probability p. A random expression is generated
forming ¢ terms

randomly by independently

excluding meaningless instances such as null,

DNF =8 4of 3k

contradictory and duplicate terms. The number of
variables is the main cause for the exponential
growth of search space. If the number of variables is
less than 20, it would not be big enough to test the
efficiency of the algorithm. If the number is greater
than 50, it would be too bhig to be practical. The
values of v are so chosen: 20, 30, 40, and 50. The
sparsity which tells the density of literals in a term
depends directly on the value of the probability p:
We pick three values of p for generating random
terms of different sparsity: 0.2 for sparse, 0.5 for
medium, and 0.9 for dense terms. And finally, the
number of terms, £, is tested on the following values:
1000, 2000, 3000, 4000, and 5000. So, there are 60
different cases in total utilizing the three parameters.
And ten random instances are generated for each
case in order to obtain unbiased characteristics of
input. Thus, a total of 600 random expressions are
prepared for the experiment. The analysis of the
random data shows that 110 out of 600 cases are
found to be tautologies and the rest(490 cases) are
likely to be nontautologies. Table 4 shows the
number of tautologies for each value of v.

2. Results of the algorithm Falsify

The Falsify algorithm was tested independently
on a set of 600 randomized problem instances of
which 490 instances are likely to be nontautologies.
The algorithm was able to falsify 408 instances out
of 490(83.2%), which
performance. Table 5 shows the falsification rate
Also,
reasonable amount of time for most of the cases.

shows a fairly good

for each wvalue of wv. the algorithm uses

4. Conclusion

falsify
We
presented the Algorithm F stating that a set of

We proposed a new algorithm to

expressions in DNF using formal methods.

terms in which there exists no merge among the
members of the set according to the merge rule
can be falsified by a minterm constructed by the
algorithm and we provided the proof of it. Later,
we proposed the Falsify algorithm which chooses a
most favorable merge position in order to speed up

the falsification process and quickly approach the

49 wE a3 667

situation where the Algorithm F can be utilized.
And we proved both the correctness and soundness
of the algorithm. Experiments on the set of
randomized problem instances showed that the
algorithm works correctly and efficiently for é wide
range of big inputs with high falsification rate
(83.2%). The idea of the falsification algorithm may

be extended to first order logic for further research.

Table 1 The Merge Rule

ald] 0 0 0 1 1 1 d d | id
Bld| 0 11 d
y[d] 0 d 0 d 1 1 0 1 d

—
(&)
[e]
—
QL

Table 2 Trace of Algorithm F for Example 2

1dd0d1011
A | 1ddoiiddd | 0111d01dd Z%ZZJS o | waid
1dddddo1]
A 0 0 1 1 10
.
ﬁﬁﬁj doddicold |
Ay | | ddOOlddla | doadidla | dbadidold| @
ddopdddl1
o111dotdd | “00%

Table 3 Traces of Falsifying for Example 3

Proc Reductions S R I3
{(d1dd!,ddd00),(didd1,doldd),
P (d1dd1, 1ddd0), (0l ddd, d0lde), @ | HL.5
(0l¢ldd, 1ddd0), (deld0g, delodlD), —d
(ddbdd1,d01dd) \delddl], 1ddd0)}
(1], dddd00), (d1dell, doldel),
(dIde1, 1ddd0), (0l ddd] dldch), o
= (O1ddd 16dd0) (g, deoary, | 2| H51=0
(dd0d1,d01dd),(dd0d], 1cidel0)}
Remove
(dldd,deddo0),(diddl.,
d0ldd),(dlddl, IdddD), ,
P31 e ol () L ((O1ddd d01dd), (01ddd, Idddd)) | {ddelOd
1), (dd0cl], Ideld0)
from S
PI {(01ddd.dolded (01 ddd Iddde)} |{deidod} | #[1)=0
pg |[Femove (lddddddd) | oraan {dddoeh
from S
PI {(dl ddd dD1dd)} (dddod) | #121=0
pg [Remove (diddd doidd) ® {dded0d,
from S ddldd}
(ddcod, | #31=0
£ : 2 ddldd} | #4]=1

668

AR A EEA 2ZEYS R & A 28 F A 9 220019

Table 4 The counts of tautologies

v 20 | 30 | 40 | 50 |[Sum

likely to be nontautologies | 100 | 100 | 140 | 150 || 490

tautoglogies 50 {50 | 10 0 | 110

Total cases 150 | 150 | 150 | 150 | 600

Table 5 Falsification rate

v 20 30 40 50

run time(sec); avg @ max || 175 553 11511158] 1781168

The number of terms
likely to be nontautologies 100 100 0 150

The number of terms
falsified by the algorithm | 100 | 107) 131
Falsification rate 0% 100% 6% 87%
Overall falsification rate 408 / 490 = 83.2%
References
[11 M. R. Garey and D. S. Johnson, Computers and

(21

[31]

[4]

[5]

161

[71]

(8]

Intractability. A Guide to the Theory of NP-
completeness, Freemann, San Francisco, 1979.

P. Lammens, L. Claesen and H. D. Man,
“Tautology checking benchmarks: results with
TC, IMEC-IFIP International Workshop on
Applied Formal Methods for Correct VLSI
Design, Vol. 2, pp.600-604, 1989.

F. Vlach, “Simplification in a satisfiability checker
for VLSI applications,” Journal of Automated
Reasoning, Vol. 10, No. 1, pp.115-136, 1993.

J. Jain, J. Bitner, M. S. Abadir, J. A. Abraham,
and D. S. Fussell, “Indexed BDDs: Algorithmic
Advances in Techniques to Represent and Verify
Boolean Functions,” IEEE Trans. on Computer,
Vol. 46, No. 11, pp.1230-1245, 1997.

R. E. Bryant, “Symbolic Boolean manipulation
with ordered binary-decision diagrams,” ACM
Computing Surveys, Vol. 24, No. 3, pp.293-318,
1992.

M. Fujita, H. Fujisawa and Y. Matsunaga,
“Variable ordering algorithms for ordered binary
decision diagrams and their evaluation,"‘ IEEE
Trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 12, No. 1, pp.6-12,
1993,

J. Lafferty and A. Vardy, “Ordered Binary
Decision Diagrams and Minimal Trellises,” IEEE
Trans. on Computers, Vol. 48, No. 9, pp.971-986,
1999.

M. Dincbas, P. V. Hentenryck, H. Himonis, A.

Aggoun, T. Graf and F. Berthier, “The constraint
logic programming language CHIP,” Proceedings
in the International Conference on Fifth Gene-
ration Computer Systems FGCS-88, ToKyo, Japan,
1938.

[91 H. Simonis and T. L. Provost, “Circuit verification
in CHIP: Benchmark results,” IMEC-IFIP Inter—
national Workshop on Applied Formal Methods
for Correct VLSI Design, Vol. 2, ppb70-574,
1989.

[10] G. S. Moon, “A Boolean equivalence testing
algorithm based on a derivational method,” Journal
of Electrical Engineering and Information Science,
Vol. 2, No. 5, pp.1-8, 1997.

[111 P. Purdom, “Random satisfiability problems,”
International Workshop on Discrete Algorithms
and Complexity, The Institute of Electronics,
Information and Communication Engineers, Tokyo,
Japan, pp.253-259, 1989.

[12] E. J. Jr. McCluskey, “Minimization of Boolean
functions,” Bell System Tech. J., Vol. 35, No. 6,
pp.1417-1444, 1956.

[13] W. V. Quine, “The problem of simplifying truth
functions,” Am. Math. Monthly, Vol. 59, No. 8, pp.
521-531, 1952.

2]
198213 ZAEogtn FHUE HFEFE
(F-8kA}). 19823 ~ 1986 KIST Al
HEstd T4, 79 19899 Uni-
versity of Oklahoma st A4+elz)
1 (©)84AL). 1995% University of North
. AL Texas TjEhed AR (e]FRAL). 1996
39 ~ 19974 29 (§4h) TEAENREa AFEeH
B4 19979 38 ~ A dFaSga Aikusat A
ZHA), 23, BAore AR, 4ndE, AFAF

i

a% N R

oy

y

