582 HEAFIHEEA L2l 2 38 A 8 F A 8 Q018

e Aol 7ukglk Ak A A Ele] Wit
(Transformation of Orthogonal Term Rewriting Systems
based on Separability)

+
[ow)
B A 2

(Sugwoo Byun)

e o AW A A2 P43 oo o T A4S & H]OQOP ATk =EAE &2
A% BR-g o 71 FEE FH flat A2 AGshE Y] “ﬂ‘”ﬂ &) 4| i—/]?_ﬂ' Amg MM A&
ge] & BE9) transformable OTRSsS A 9)slal, o] A|AHEL flat A)2HoE HEEH 4 98-S H
At} o] e T AN dTd B4 clES 7]‘5“’3 a3 Qed, B =Edas dmdt A
A A zEe)A e Bl 4 wadel W ddgel delME Eejsta ok ‘

o

l>

Abstract OTRSs (orthogonal term rewriting systems) provide a well-known description of -
functional languages and their implementation. This paper describes some ways of transforming
such systems into systems having simpler left-hand sides, the goal being to transform them into
‘flat’ OTRSs, which have a particularly simple form. A class of systems, the transformable
OTRSs, which allow such a transformation is defined. Transformation, in this paper, is based on
the separability theory, originally developed in the A-calculus., We also associate separability with
strong-sequentiality in OTRSs.

1. Introduction strongly sequential systems.

Huet and Lévy developed a foundational theory of

There is a well-developed theory of OTRSs pattern—matching® semantics known as[1], Wh‘ere

(orthogonal term rewriting systems) [11[2]1[3][4]. pattern- matchmg sequences of strong sequentlal

Such systems are well-known as a description of systems are described as ma tching dags. In. this

computation in functional languages. The task of paper, we define separation trees for cons tructor

n-matching in iy her . L. N
patterr atching such systems can be rat systems, the idea, of which is borrowed from 'Bthm

complex, as demonstrated by [1]. One method of separability’ in the A-calculus. Fach pattern

simplifying this task is to transform OTRSs into . . .
matching sequence in strongly sequential

OTRSs whose rules have simpler left-hand sides.) . . .
constructor systems is described as a separation

In this paper, we define several such transfor- tree. Intuitively the condition of transformation is

mations, which together transform many OTRSs that a transformed system should preserve a

info a particularly simple form, the so-called flat pattern-matching sequence of the original system.

systems. The class of systems which these Given a TRS B with a separation tree I/ and a

transformations can “flatten”, the transformable . . .
° ’ o transformation function 7, a relation between R and

systems, lies strictly between the class of strongly T(R) can be represented by a relation between [f

sequential constructor systems and the class of and subtrees of [J.

Kennaway has introduced some transformation
v H 9 AYNEgn FEAR o
swhyun@star.ks.ac.kr
=RAS 20009 122 149 mation which generalizes Kennaway's transformation
Arrgrs o 2001d 64 139

functions in[5]. Here, we define the generic transfor-

Ao 7k Aayg A Al2de] HE 583

functions, Whereas those functions are defined for
constructor systems, we would like to consider a
TRS which can be transformed into a strongly
sequential constructor system. It is difficult for us
to show every strongly segeuntial system as well as
orthogonal TRSs can be transformed. We show
subclass of strongly

transformable systems, a

sequential systems, can be transformed. The

correctness condition is strengthened. Given a
system and its transformation, we show that not
only a transformed system simulates the original
system (forward simulation) but the original system
also simulates the transformed system (backward
This

bisimulation between two systems.

simulation). means the existence of a

Transformation techniques based on strong
sequentiality are applied to the the implementation
of functional programming languages[6] and a term
graph rewriting language Dactl[5]. Unless it is
mentioned, TRSs mean orthogonal TRSs in this

paper.
2. Preliminaries

A TRS over signature 2 is a pair (Ter(2), R)
consisting of the set Ter(Z2) of terms over the
signature 2 and a set of rewrite rules B < Ter(3)
x Ter(5). The signature 5 consists of:

"« a countably infinite set Var of variables
denoted as x, v, =z, ..,

- a non-empty set of function symbols denoted
as capital characters F, G, .., each equipped

with arity (a

symbols with arity O are called constants.

natural number). Function
The set Ter(2) of terms over a signature 2 is

defined inductively:

&€ Ter(2),

« If Fis an n-ary function symbol and %, ..., I»
& Ter(3), then F(ti, .., tn)ETer(3).

The set R of rewrite rules contains pairs (I, r/

= variables x, y, z, ...

of terms in Ter(2), written as [— r, such that
left-hand side (or LHS) !

variable,

« the is not a

« every variable occurring in the right-hand side

(or RHS) r also occurs in L

If the principal function symbol of [is F, then !
— r is called a rule for F, or an F-rule. s = ¢
indicates the identity of two terms s and t. The set
O(t) of occurrences (or positions) of a term (€
Ter(2) is defined by induction on the structure of ¢
as follows: O(t) = { A} if t is a variable, and O(t)
={4} Ufiull <i <n and ue O}, if t is
of the form F(t .. t). If ueO(t) then the
subterm tlu at a position u is defined as follows:
tlA =t and Flty, ..., tJliu = t:lu. A subterm s of
a term t is proper if s # tl4. The depth of a
subterm of ¢ at position u is the length of w.
Similarly levels of a term are defined. Given a
term ¢, level(t) = 0 if ¢ is a variable, and level(F)
= 1 and level(F(t;, .. , t)) = 1 + the maximum of
level(t;), ..., level(t,) if £ F(ty, ..., tn).

Contexts are terms in Ter(2U[J), in which the
special constant [, denoting an empty place, occurs

fi

exactly once. Contexts are denoted by C[] and the
result of substituting a term ¢ in place of [Jis Cl¢
JETer(3). sfv = t] means the substitution' of a
term ¢ for the occurrence v in a term s. ‘

A substitution is a map 0 . Var — Ter(2)
satisfying the equation O(F(t;, .., t)) = F(o(t1), ..,
o(t,)). The result [° of the application of the
substitution ¢ to the term [is ah instance of I A
redex (reducible expression) is an instance of a
LHS of a rewrite rule. A reduction step s — t is a
pair of terms of the form C[— C[r", where !
— r is 'a rewrite rule in R. — denotes the
reflexive transitive closure of —.

A normal form is a term containing no redexes.
A term t has a normal form n if t is reducible to n
and n is anormal form.

The function symbol at A of a term ¢ is called
the principal function symbol of t. Principal function
symbols of LHSs of E are called operators and
other function symbols constructors. A term ¢ is an
operator term (resp. a constructor term) if the
leftmost symbol of ¢ is an operator (resp. a
constructor). ‘

Let R be a TRS. A rewrite rule | — 1 is

left-linear if no variable occurs twice or more in /.

584 ARATH =gA AZEY] B & A B A A 8 520018

@ is non-overlapping if for any two LHSs s and ¢,
any position u in ¢, and any substitution ¢ and T
Var — Ter(3) it holds that if (t]u)’ = s° then
either ¢|u is a variable or ¢ and s are LHSs of the
same rewrite rule and u = A (i.e. non-variable parts
of different rewrite rules do not overlap and
non—variable parts of the same rewrite rule overlap
only entirely). R is orthogonal if its rules are
left-linear and non-overlapping. Orthogonal systems
are called constructor systems if the LHSs of rules

do not include a proper operator term.

3. Strongly Sequential Systems

A redex in a term ¢ is needed if it must be
contracted in order to get to the normal form of ¢,
and the call-by-need computation means that no
redex is ever reduced unless it is needed.
Neededness is not decidable in orthogonal TRSs,
Huet decidable

approximation known as strong sequentiality[l].

hence & Lévy proposed a
However, strongly sequential systems are still too
complicated to be used practically,
simpler versions are proposed.
Definition 1 Let 2 be an orthogonal TRS and £

be a new constant symbol. The set Tere of 2

~terms consists of signature (2 U{@}).

1. On TeroR) we define a partial order < by:

« <t for all tETerdR).
o F(ty, w, tn) < F(si, ..., so) if ti < s, for i = 1,
ey . We write t<s if t = s and t<s.

2. s,t&Tere are said to be compatible (notation s 1
t) if there exists a term p&Ters such that s<p
and t<p. Otherwise, s and t are incompatible
(notation s#t).

3. Let S&Tere and tETere. Then t=S (respectively,
t15) if there exists some p&ES such that ¢ > p
(respectively, t1p); otherwise £2S (respectively,
HS).

4. te denotes the @~term obtained from a term ¢ by
replacing each variable in t with 2 The redex
schemata of a TRS R is Lhs = {lp | | = r € RJ

O. @-reduction, written as —, is defined on Tere as
Clt] = Cf2] if t1Lhs and ¢t = £ A redex

w.r.t. — is an ¢-redex.

and several

Q means ‘unknown’ or 'bottom’. Ordering relation
s < t is read "s is weaker than t” or "t is stronger
than s”.

Definition 2 Let R be a TRS and s and ¢ £
~terms of TeroRR).

1. A predicate P is
considered as a function mapping from an £

monotonic Wwhen . it is

-term to truth-values ordered by false < true
such that if s < ¢, then P(s) < P(t).

2. A monotonic predicate P is sequential at a term
t ifi(—=P(t) A Fs > & P(s)) = Jultlu = 2 A
Vst P(s) = slu = 9
An occurrence u as above is an. index of P in £

P is sequential if it is sequential at every term

which is in normal form (by the original rules of

the system, not w-reduction). I,(#) is the set of
indexes of P in ¢

3. s = tif and only if ¢ = s{u = g/ for some
redex occurrence u at s and an arbitrary term gq.

A predicate nif’ of strong normal form is defined

w.r.t. the reduction —' such that nf(s) = true

if s =" ¢ for some ¢ in normal form. ’
4. An orthogonal system F is strongly sequential if

nf’ is a sequential predicate.

Strongly sequential systems are sequential, but
not vice versa. Let @¢) be the result of substi-
tuting £ for every outermost redex ¢ A strongly
needed redex of t is a redex at an occurrence in
L (L)),

Proposition 3/1] Indexes of strongly sequential
systems are decomposable but not transitive.

Definition 4 1. Let ¢ be an w-redex and u&

Lig(s), v, ., Un € Ip(t). X uvi Elyplslu = t])

for every s&Tere and u&lg(s), then v; is a

transitive index.

2. A TRS R is called index—transitive if every w

-redex ¢ has a transitive index.

Index—transitive at Definition 4 is the same as
transitive at[7].

Proposition 5(7] If a TRS R is index—transitive,
then R is strongly sequeniial.

Definition 6 1. Let gtSTere An occurrence u
at ¢ such that tlu = £ is said to be a direction
for g if t/fu = @] # g (e is a 'fresh’ symbol).

gl 7k Hu

2. Let Lhs" = {p | 2 < p and p is a subterm of [
for some [E€Lhs). A transitive direction is
defined as a direction for Lhs”.

Theorem 7 [7] Let R be a TRS. R is
index—transitive if and only if every simple w
-redex t € {p | 2 < p < r for some rELhs} has
a transitive direction. ‘

Strongly sequential constructor systems are
orthogonal constructor systems which are strongly
sequential., Strongly sequential constructor systems
are index-transitive [8].

. Often operators at proper subterms in the LHSs

the

constructor systems

while
We

concern systems which can be transformed into

of rules make system intricate

are more manageable,

strongly sequential constructor systems.

Definition 8 A simple w-term is a closed o
-term s such that s is an operator term, s 1.Lhs,
no proper subterm of s is an w-redex, and s is
not a redex.

Definition 9 A TRS R is transformable if every
simple w-term has a transitive direction.

Obviously transformable are strongly
sequential, but not vice versa. For example,
consider LHSs : F(G(x, S5(0)), B), F(A, G(x, S(v)),
G(1, 1). A system with these rules are strongly

systems

sequential, but it is not transformable as a simple
w—term G(2 S(£)) has no transitive direction.

4. Separable Systems

4.1 Separation trees ‘

In the A-calculus, the 'meaningless’ of a term is
explained by Bohm trees, which are considered to
be the ‘values’ of terms. Together with Bohm
trees, 'separability’ is also well-developed[9]. The
concept of meaningless—terms has been extended to
orthogonal TRSs[10], in which there are several
candidates for a notion of ‘undefined’ term on
which to base the definition of Bthm trees.
Common to these is the minimal condition that the
left-hand should be

Based on this notion, we construct

proper subterms of sides

meaningful.
separation trees, which adapt to term rewrite
the 'Bdhm-out’

systems construction of A

B} M A= HE 585

—calculus, o
Definition 10 Pr is the set of tuples obtained by

removing the principal function symbol F from the

LHSs of F-rules.

1. An occurrence u is useful for Pp if YpEPr ue
O(p) (For
convenience, occurrences of Pr will be those of

and plu is not a variable.
LHSs of the F-rules. So, every occurrence of Pr
is not A.)

2. A separation tree U for a set Pr is a ftree,
whose nodes are labelled by occurrences, such
that
+ the root wp is a useful occurrence of Pr,

« subtrees are separation trees of Pm, for I<i<
n, which do not re-use previous useful
occurrences again, where Pp is partitioned into
equivalence classes modulo the symbols at wp
such that Pr = Pm 2 U ... U Ppn

3. A separation tree U is complete if, in the result
of recursive, partition of Pr, the corresponding
partitioned set for every leaf of U/ is a singleton;
otherwise it is partial.

4. Pr is distinct if Pr has a complete separation

The

distinct.

tree. F-rules are separable if Pr are
5. A constructor system is separable if every set
of rewrite rules for an operator is separable.
Example 11
(i) F(x, A, B,
F(B, x, A,
F(A, B, x,.
(i) F(x, A, B,
F(B, x, A,
F(A, B, x,
F(x, A, B,

C) — 1
C) —2
C) —3
Cc) —1
C) —2
D) —3 ‘
C S(D) —1
F(B, x, A, C, S(D)) =2
F(A, B, x, C, S(E)) — 3
The occurrence 4 is useful at (i). Because every

(iii)

symbol at 4 is the same, no partition is made, and
then there is no other useful occurrence. Hence, (i)
is not separable. (ii) and (iii) are separable.

The following. shows that the selection order of
useful occurrences is irrelevant to the success of

constructing a separation tree.

586 ARAEH=EA AnEYo] 2 S8 A 28 A A 8 EQW0LY)

Proposition 12 Let the F-rules be separable
and have more than one useful occurrences. Then
choosing any one of them arbitrarily leads to a
separation tree.

Proof.
useful occurrence. Then, obviously, u is an useful

Let P be a set of terms and u is a

occurrence of P’ C P as well. Given two useful
occurrences u and v for P, u is ’‘optimal’ if the
number of partitioned subsets w.rt. u is not less
than the one wur.t. v. Then, it is clear that there is
at least one optimal useful occurrence for every set
of terms. Partitioning into subsets as the order of
u-v and v-u, we can get the same partitioned
subsets. We claim that if the F-rules are separable,
then there exists a complete separation tree U such
that every node of U is optimal. If there are two
or more than optimal occurrences at a certain
stage, any successive application order by choosing
them arbitrarily get the same result. Now we
consider the case of choosing v when an optimal
occurrence u and a non-optimal occurrence v at a
certain stage. Then, obviously, at every subset
after partitioning wurt. v, u is still a useful
occurrence, Therefore, both choosing an optimal
occurrence and non-optimal occurrence can leads to
a complete separation tree. O

4.2 Transformable separation trees

Definition 13 A transformable separation tree
U is a separation tree such that wherever there is
a path from the root of U containing nodes labelled
by v and v, and u < v, the node labelled by v is
deeper than the node labelled by w.

Lemma 14 Every separable system has a trans—
formable separation tree.

Proof.

2. Then, by the structure of terms, there exists

Let u be a useful occurrence with depth

another useful occurrence v such that v < u and
the depth of v is 2. By Proposition 12, there is a
separétion tree whose root is v.]

Lemma 15 Suppose that the F-rules are in a
constructor system. The F-rules are strongly
sequential if and only if the F-rules are separable.

Proof.

detail proof can be found in[11]. Strongly sequential

Here, we present only a proof sketch. A

constructor systems are index-transitive, and then
by Theorem 7 every simple w-redex of the F-rules
has a transitive direction. By Lemma 14 every
separable system has a transformable separation
tree. Then, the proof can be given by showing
"every simple w-redex of the F-rules has a
transitive direction if and only if there is a complete
transformable separation tree for the F-rules”.

Consider a partitioning procedure to construct a
complete transformable separation tree U. U is
increasing as the partition proceeds. Then, we
claim that there exists an equivalence class P
partitioned by U and P has a useful occurrence u
& there exists a corresponding simple w-redex s
such that

u is a transitive direction of s such that slu

2 and slv = £ vl

where # means a subtermm which has not been

I

used previously for partitioning. We prove the above

claim by using induction on the size of U.]
Theorem 16 Let a system R be a constructor

system. R is strongly sequential

if and only if R is separable.

5. Transformation

5.1 Generic transformation

In the implementation of TRSs, pattern-matching
for some function symbols should be performed in
advance of others. This notion should be preserved
in transformation.

Definition 17 Let the F-rules be separable, Oy
the set of some useful occurrences of Pr, On = {u |
u is an every occurrence of [EPr such that u is
not useful for Pr}, and O = {u | u is a
disjoint—minimal occurrence in O, U O,). B's are
subterms at Op and A’s are subterms other than
B's in Pr. Given the F-rules and O, Op is
decidable and the generic transformation is applied
to every F-rule as follows;

F(Bi, ..., B, A1, ..., Amm) — K;
F(Bu, .., B, A, vy An) — R
is transformed into

F(x1, oy Xn, A1ty oy Aim) — Filxs, oy Xn, Y1, ey Y1)

240 7)ika 2

F(Xl, vy X, Apl, ey Am) nd Fp(xl, ey Xn, Y1, o, yr)
Fi(Bi, ..., Bin, y1, ..., yi) — Ri

Fo(Bpi, ..., Bpn, v1, .., yr) — Bk
which satisfies (For
convenience sake, the above rules describe the case
that all B's are subterms at the level 2.)

1. If all symbols B’s are variables in an F-rule, it

the following conditions.

remains unchanged. Otherwise, B's in the F-rules
‘are replaced by new variables (not already
occurring in the system being transformed) x's,
the RHSs in the transformed F-rules consist of
new operators and include no function symbols
but all in the LHS at
arguments, where y's are variables occurring in
A's. At this time,

simultaneously for all B’'s. New rules with new

variables appearing

the replacement is made

operators Fj, .., Fp for p < k are introduced.
2. Define =
terms / and !” as follows:
I =" & [and !’ differ only the names of their
variables.

equivalence relation between two

The rewrite rules are partitioned, based on the
equivalence classes of their transformed LHSs(i.e.
the equivalence classes modulo symbols A's), and
every such equivalence class is replaced by a
single rule(every rewrite rule. belongs to one of
partitioned equivalence classes). In 1, if no

equivalence class with two or more rules is

created, then p = k; otherwise p < k and, for an
equivalence class with j > 2 rules in the original

F-rules, there are corresponding j Fi—rules.

3. Let P;CR be an equivalence class created in the
generic transformation and Fy-rules its .corres—
ponding new rules in the transformed system.
For every v&€0s and every pair of LHSs [; and
Iz of P there is a corresponding occurrence u
and a pair of LHSs ;" and [’ of the Fi-rules

such that u is at the level 2, Llv = L'lu and

Z M A" wE 587

Llv = I'lu

In Definition 17, all function symbols appearing in
the LHSs of the original system appear in the
LHSs of a transformed system.: All RHSs of the
original F-rules never change and appear as RHSs
in the transformed system. On the other hand, O.
is decidable. Hence, given the F-tules and O, Os
is decidable. The set Oa of occurrences of A's are
Ov - Oy for
the set Oy of all useful occurrences of Pr.

useful and decidable such that Oa =

Example 18 Suppose the following F-rules are

given.
F(C(z, A), B, E) = 1
F(C(B, z), A, E) =2
F(C(A, B), z, D) — 3
Given O, = {3} and O, = ¢, the rules are

transformed as (i) and (i), respectively. It is easy
{1-1, 12, 2}. In (), O = {11, 12, 2,
3}, and substitution of Op creates a equivaleflce

to see Oy =

class with three rules, hence they are replaced with
a single rule, and three new rules are creatédl In
(D), Op = {11, 1-2, 2}, and substitution of Oz
creates a equivalence class with two rules, ‘he‘nc‘e
they are replaced with a single rule, and two new
rules are created. .
(1) F(Clx1, x2), x3, x4) — Fl(x1, X2, X3, Xa)
Fi(z, A, B, E) — 1
FiB, z, A, E) =2
FiA, B, z, D) — 3~
(i) F(Clxi, x2), x5, E) — Filxi, x5 x3)
F(Clx1, x2), x3, D) — F2(x1, xz, x3)
Fiz, A, B) — 1
FyB, z, A) =2
FA{A, B, z) =3
'The generic transformation can be described by
transformable separation trees. Suppose a transfor—
mable separation tree U in a form of Fig. 1, where
Ua consists of O in Definition 17. After the gerjeric
transformation, the pattern-matching :sequence for
Ua is performed in the transformed F-rules and the
paftern—matchihg sequence for U's (1< i< p) in
the néw rules. B}f Definition ‘17.3, when ‘some
subterms in the patterns of an equivalence class
created by the generic transformation are moved to

588 ARAGH=FA AZES o] B g4 A 28 7 A 8 (20019

patterns of new rules, their ‘structure’ is preserved
in the new rules. It is not difficult to see that, for
every U, there is a corresponding separable trees V;
in the corresponding new rules so that there is a
one-to-one corresponding mapping between U's
and Vi's. By Proposition 12, we don’t have to care
what the specific structures of U;'s and Vi’s are.

Fig. 1 Transformable separation tree

Lemma 19 A set of rewrite rules is separable
if and only if its transformed rules satisfying the
generic transformation are separable.

5.2 Transformation functions

In this subsection, we demonstrate how transfor—
mable systems are transformed. Three transfor—
mation functions Co, T2, and ES are introduced.
The application of Co(resp. 72 and ES) to a
transformable system E is written as Co(R) (resp.
T2(R) and ES(R)).

Definition 20
whose patterns are not deeper than the level 2 and
F(t;, ..,) be a LHS. We say that F
pattern-matches at the i-th place if ¢ is not a

Let R be a separable system

variable. If there is a useful occurrence i for the
F-rules, then 7 is an always-matched place of F. If
there is no function symbol at /i for all F-rules,
then ¢ is a never-matched place of F. Otherwise,
is a sometimes—matched place of F. R is said to
be flat if R has no sometimes—matched patterns.

5.2.1 Operator térms in patterns

In Example 21.(0), proper subterms G(x, S(0))

and G(x, E) in LHSs have an operator G. The
LHSs of these rules are transformed into terms in

constructor form by adding new rules, whose

corresponding LHSs are Glx, S(0)) and G(x, E)

and RHSs consists of new function symbols C; and
Cz and variables occurring at LHSs, and by
replacing subterms of G(x, S(0)) and G(x, E) in
the original rules by RHSs of the new rules, which
transforms the LHSs of the F-rules into F(Ci(x),
B) and F(Ci(x), C).

In Example 21.(ii), an operator (¢ is nested in the
pattern. By one application of Co, a new rule
G(G(A)) — C

operator ¢ in the pattern. Another application of Co

is created, which still has an

transforms them into a constructor system.

In Example 21.(ii), two proper subterms G(I, x)
and G(1, y) of LHSs are = equivalent, G(I, x) =
G(1, y). Such =
replaced by a same constructor term Ci(x), and
is G(I, x) is

equivalent operator terms are

only one new rule whose LHS
introduced.

Example 21

) F(G(x, S(0)), B) — 1
F(Gx, E), C) =2
G(D, D) — 3

is transformed into
F(Ci(x), B) — 1
F(Cox), C) — 2
G(x, S(0)) — Ci(x)
G(x, E) — Cix)
G(D, D) — 3

(i) F(G(G(A))) — 1
G(B) — 2

is transformed into
F(Cy) — 1
G(C) — C
G(A) — G
G(B) — 2
G(A, B) — 3

(i) (G, x), A) — 1
F(B, G(1, y)) — 2
G(A, B) — 3

is transformed into
F(Ci(x), A) — 1
F(B, Ci(x)) — 2
G(1, x) — Ci(x)

Algorithm 22

proper operator term in LHSs. Then, replace s by a

(Co) Let s be an outermost

M

new term C(xi, .., xu), where C is a new
constructor and the x;"s are variables occurring in
s, and make a new rule s — C(xz, ..., xo). If there
exists another proper operator term s’ in LHSs
such that s=s’, then s’ is also replaced by Clxi, ..,
xn). Repeat this procedure until there exist no
operators at proper subterms in the patterns.
Co is not an instance of the generic transfor-
mation f Definition 17.
5.2.2 Patterns at deeper than level 2 ‘
The transformation function 72 has already been
introduced as Transformation-1 at[5]. T2 eliminates
sometimes—matched patterns as well as patterns
whose level is greater than 2. Then, repeating T2
transforms a strongly sequential constructor system
into a flat system.
In the Example 23.(1), the first rule has the
pattern 0 at level 3, and the second rule has the
symbol S at the level 3 and 0 at-4, and there are
sometimes—matched pattern at occurrences I and Z.
The algorithm ‘trims’ the LHSs to level 2, by
replacing deeper subterms and sometimes-matched
patterns by new variables. Then, two new LHSs,
H(y, x, S(z)) and H(x, y, S(x)), are. obtained.
Since H(y, x, S(z)) = H(x, vy, S(z)), these two
rules are replaced by a single rule H(x, y, S(z)) —
Hi(x, v, z) where H; is a new function symbol.
This rule does the pattern-matching common to the
first and the second rule, down to level 2 for
always-matched patterns. By adding two rules,
Hi(C, vy, 0) — 1 and Hi(x, C, S(0)) — 2 the rest
of pattern matching is done. The second rules has
the pattern 0 at level 3. Applying the algorithm
again to the second rule, the Example 23.(1) . 1is
obtained.
Example 23
() H(C, x, S(0)) — 1
H(x, C, 5(5(0))) — 2

is transformed into
H(x, y, S(z)) — Hilx, v, z)
Hi(C, y, 0) > 1
Hi(x, C, S(w)) — Hzw)
H)0) — 2

(i) F(G(G(A))) — 1

2 7ugk 2

g AA Al=we] B 589
G(B) — 2
is transformed into
F(G(x)) — Fl(x)
FU(G(A) — 1
G(B) — 2
The algorithm of 72 can be defined simply by
using the Definition 17; define the set O, of useful
occurrences whose levels are greater than 2.
5.2.3 Sometimes-matched patterns
A transformation function ES has already been
introduced as the Transformation-2 at[5]. In
Example 24.(1), the occurrence I of the F-rules is
sometimes-matched. Subterms of Nil and Cons(x,
v) are replaced by fresh variables, and rules of a

new function symbol F; are added. In this
replacement, an equivalent class is created. The
second and third rule of Example 24.() become

equivalent, so they are replaced by a single rule:
F(x1, Cons(x, y)) — Fi(x1, x, y).
24.(1)

sequential. The Gi-rules are introduced by ES, and

Rules in Example are not strongly
then they cannot be simplified further.
Example 24
(i) F(x, Nil) — 1
F(Nil, Cons(x, y)) =2 ‘
F(Cons(x, vy), Cons(x, y)) —3
is transformed into
F(x, Nil) — 1
F(x;, Cons(x, y)) — Fiulxi, x, y)
FyNil, x, y) — 2
Fi(Cons(x, v), z) — 3
(i) G(x, A, B, C) — 1
G(B, x, A, C) =2
G(A, B, x, C) — 3
is transformed into
Gix, y, z, C) — Gl(x, vy, z)
Gl(x, A, B) — 1
GI(B, y, A) = 2
GI(A, B, x) =8
The algorithm of ES is simply obtained by
defining Oy = ¢ in the Definition 17.
5.8 Transformation of transformable systems
Lemma 25 If R is transformable then Co(R) is

a strongly sequential constructor system.

590 AR E=EA AZEY] B S8 A 28 A A 8 T(0LY)

Proof. Immediate from Definition 9.]

Theorem 26 If R is transformable, then both
T2(Co(R)) and ES(Co(R)) are flat.

Proof. By Lemma 25 Co(R) is strongly sequential
(or separable). 72 and ES satisfy the generic
transformation. Then, by Lemma 25 T2(Co(R)) and
ES(Co(R)) are separable with whose LHSs have
levels no more than 2. J

6. Correctness

In this section, transformation means the transfor-
mation of transformable systems by Co, 12, or ES.
Fact 27 Let @ be one of transformation functions
Co, 72, and ES,
system F is transformed into a system R’ ie 7

and suppose a transformable

- R — R’. Then the following facts are observable,

1. R’ consists of all signature of K and some new
function symbols; Ter(R’) 2 Ter(R).

2. The reduction steps of R’ are finer than K. For
every one step reduction of R, there is at least
one or more corresponding reduction steps in B’
s —pt = uls) —p' Tt

3. All normal forms of R are not normal form in £’
Hence, normal forms of B and R’ are not the
same. In Example 21.(i1), G(A) is normal form in
R but not in R’. In Example 23.(G), H(C, 0, S(A))
is normal form in R but not in R’

4. If a term s has normal form in R, s has normal

in R% the

preserved.

form notion of normalizing is

Definition 28 A reduction graph of a term s is

rooted directed graph labeled as follows.

» Each node is labeled with a term.

» For each arc, the term labeling its source is
reducible in one step to the term labeling its
target.

» The root of the graph is labeled with s, and
all nodes are accessible from the root.

Fig. 2.(D)

implemented by multiple ‘finer’ reduction steps of

shows that a reduction of R is

R’. Fig. 2.(ii) means the same simulation of Fig.
2.(1) but it says one more thing that every ‘finer
reduction step of R’ is a part of implementation of

a ‘coarser’ reduction step of R. If a transformation
satisfies Fig. 2.(i) and Fig. 2.(Gi), then R and R’
bisimulate.

id >
T1 71
R’ ‘LH"’ LR S

(i) Mapping R to R’

\{

(ii) Mapping R’ to R

Fig. 2 Bisimulation (R, R’, 71, T

For a reduction s —r ¢, there are multiple-step
reductions Ti(s) —r" w(t) in B’ The last reduction
step to reach to Ti(t) is called an external step,
and all other reduction steps starting from w(s) are
called internal steps. Terms of R’ reached by
internal steps are called internal terms. Terms of
R’ which are not internal are called original terms,
which are the same as the terms of R. Note that
there is a one-to-one correspondenice between
external steps of B’ and reduction steps of E.

Fact 29 Suppose the system R is transformed
into the system R’ Let B € R’ be a set of rules
whose RHSs are newly created by transformation.
Then, we can see that the newly created RHSs has
only one function symbol at the root, and all its
arguments are variables and linear if they exists.
Consider a set S of rewrite rules obtained by
swapping the LHSs and the RHSs in R”. Then, S
has the following properties.

+ S is strongly normalizing; in 72 and ES, the

a4 7)uke Hm

principal function symbols of LHSs of S do
not appear at RHSs, and, in Co, they appear
at RHSs but not recursively.

+ S is orthogonal.

* A term ¢ is normal form in S if and only if ¢
ETer(R).

+ Given an internal term of R/, S returns .a
corresponding original term. Given an original
term, S returns it.

We define a function rev . Ter(R’) — Ter(R) as

the set S of rewrite rules.

Definition 30 Suppose a system R is transformed
into a system R’ by a transformation function ; -
R —> R’ and its reverse mapping is & - R’ — R.

1. The mapping 7 is an adequate forward mapping
if:

+ T(s)

« If s&Ter(R) has a normal form R, then Ti(s)
has normal form in R’

= s for every s&Ter(R).

*« For every reduction s —p ¢ there exist
reductions Ti(s) —a" Ti(t).
2. The mapping T is an adequate backward
mapping if:
+ T2 = rev (which is surjective).
» If s&€Ter(R’) is normal form, T(s) is normal
form in R.
« For s,tER’, if s —r ¢, there exist reductions
(s) —r' Tat).
3. Suppose the above 1 and 2 hold. Transfor-

mation (R, R’, 7, ©) is adequate bisimulation if:

« T(T(t)) is convertible to t and T(T(s)) = s
for all t&Ter(R’) and for all s€ Ter(R).
) 2r s © t—or" Tls) for s€Ter(R) and

tETer(R’).

Fact 27 and Fact 29 support the following
simulation properties.

Lemma 31 (Soundness of simulation). Suppose a
system R is transformed into a system R’ by one
of transformation functions Co, T2, and ES. Then,
there exists an adequate forward mapping = @ R
— R,

Lemma 32 (Completeness of simulation) Suppose
a system R is transformed into a system R’ by
one of Co, T2, and ES. Then, there is an adequate

A Al2Fe W 591
backward mapping Tz - R" — R.

Theorem 33 Suppose a transformable system T
is transformed into a flat system F by Co, T2, and
ES. Then, the transformation (T, F, @, %) is an
adequate bisimulation. -

Proof.
one-step transformation. Then, by Lemma 31 and

Suppose that T is transformed into I by

Lemma 32, there are adequate forward and
backward mappings, and then it is immediate that
the transformation is an adequate bisimulatidn. In
case of multi-step transformajcions, } given two
adequate forward mappings ' By — Rz and T ¢
Rs — Hs it is obvious to see 'L'12 -7 is also an
adequate: forward mapping. Similarly the composition
of two adequate backward mappings is an adequate
backward mapping, since they are surjective. Then,
it is immediate that the composition of multi-step

adequate bisimulations is also an bisimulation. [_]

7. Conclusion

Transformation into a flat system is used in the
implementation of TRSs and functional languages.
In this paper,
techniques and show the correctness of transfor—

we introduce transformation
mation. Those techniques enhance previous W(Jrk[S]
and are a‘lssociated‘ with well-developed theories
such as strong sequentiality[1] and separability[9].
This work could be seen as a foundation for the
correct implementation of TRSs and functional

languages.

Acknowledgement

This work was supported by grant No. 2000-1-
30300*010—3 from the Basic Research’ Program of
the Korea Sciencé & Engineering Foﬁndation.

References

[1] G. Huet and J-J. Lévy. Computations in
orthogonal rewrite systems I and II. In Lassez
and Plotkin[12], pp. 394-443. (Originally appeared
as[13].).

JW. Klop. Combinatory Reduction Systems,
volume 127 of Mathematical Centre Tracts. CWI,
Amsterdam, 1980. PhD Thesis.

(21

592

[3]

[4]

(6]

[71

[10]

[11]

[12]

ARATEEA AEEY]

N. Dershowitz and J.-P. Jouannaud. Rewrite
systems. In van Leeuwen[14], chapter 15.

JW. Klop. Term rewriting systems. In Abramsky
et al. [15], pp. 1-116.

JR. Xennaway. Implementing term rewriting
languages in Dactl. Theoretical Computer Science,
72 225-249, 1990.

L. Maranget. Two techniques for compiling lazy
pattern matching. Technical Report 2385, INRIA,
1994.

Y. Toyama, S. Smetsers, M.C.].D. van Eekelen,
and M. J. Plasmeijer. The functional strategy and
transitive term rewriting systems. In Sleep et al.
[16], pp. 61-75.

JW. Klop and A. Middeldorp. Sequentiality in
orthogonal term rewriting systems.. Jowrnal , of
Symbolic Computation, 12 : 161-195, 1991.

H.P. Barendregt. The Lambda Calculus, its Syntax
and Semantics. North-Holland, second edition,
1984."

Z. Ariola, JR. Kennaway, J.W. Klop, M.R. Sleep,
and F.J. de Vries. Syntactic definitions of un-
defined: On defining the undefined. In Theoretical
Aspect of Computer Software, Springer—Verlag,
Lecture Notes in Computer Science 789, pp. 543—
554, 1994. .

S. Byun. The Simulation of Term Rewriting
Systems by the Lambda Calculus. PhD thesis,
Univeristy of East Anglia, 1994.

J-L. Lassez and G.D. Plotkin, editors. Compu-
tational ngic.‘ Essay in Honor of Alan Robinson.
MIT Press, 1991.

G. Huet and J.-]. Lévy. Call-by-need compu-
tations in non-ambiguous. Technical Report 359,
INRIA, 1979.

J. van Leeuwen, editor. Handbook of Theoretical
Computer Science, volume B: Formal Method and
Semantics. North~Holland, Amsterdam, 1990.

S. Abramsky, D. Gabbay, and T. Maibaum,
editors. Handbook of Logic in Computer Science,
volume II. Oxford University Press, 1992.

MR. Sleep, M.J. Plasmeijer, and M.CJD. van
Eekelen, editors. Term Graph Rewriting Theory
and Practice. John Wiley & Sons, 1993.

ol

2 &8 A 28 d A 8 Z(00L8)

B

Al QL
- 1

2
197610 ~ 1980 SAvhen A=A
(&FA}). 1980 ~ 19823 HAoigtw A
AAAMAAY. 1982 ~ 19993 ETRI
AoddTd, 19883 ~ 19943 A=
University of East Anglia #A4+gH(a}
AP, 1998 ~ BA BAYER FAFH
Hata 2 BalBoke TR A 9n|E, rewriting

system, ¥8 2o, AF A9 5

